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A novel method of the time–frequency analysis of non-stationary heart rate variability (HRV)

is  developed which introduces the fragmentary spectrum as a measure that brings together

the  frequency content, timing and duration of HRV segments. The fragmentary spectrum

is  calculated by the similar basis function algorithm. This numerical tool of the time to

frequency and frequency to time Fourier transformations accepts both uniform and non-

uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once

the  fragmentary spectrum is calculated, the inverse transform recovers the original signal

and reveals accuracy of spectral estimates. Numerical experiments show that discontinu-

ities  at the boundaries of the succession of inter-beat intervals can cause unacceptable

distortions of the spectral estimates. We  have developed a measure that we  call the “RR
ragmentary spectrum

BF algorithm

R deltagram

ontrolled respiration

deltagram” as a form of the HRV data that minimises spectral errors. The analysis of the

experimental HRV data from real-life and controlled breathing conditions suggests tran-

sient oscillatory components as functionally meaningful elements of highly complex and

irregular patterns of HRV.

mated measurement of inter-beat intervals. This means that
.  Introduction

he variation in the timing between beats of the cardiac
ycle, known as heart rate variability (HRV), has been shown
o provide important insights into the balance between the
wo limbs of the autonomic nervous system, the sympathetic
nd parasympathetic branches [1].  This information has been
idely used to assess the influence of the autonomic nervous

ystem on cardiovascular control [2].  This has potential clin-
cal significance for a variety of medical conditions, both of

ardiac (myocardial infarction, congestive heart failure, life
hreatening arrhythmias, etc.) and non-cardiac origin (dia-
etes, neuropathies, obesity, etc.) [3].  Non-clinical applications
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include tests and monitoring of human performance under
different physical and psychophysiological conditions [4].  A
relatively novel field of HRV applications is the analysis of
emotion regulation and psychological wellbeing, as outlined
in the polyvagal theory [5].

Standard methods of HRV estimation are based on the
measurement of intervals between heart beats using peaks
of R waves  in the electrocardiogram (ECG) as markers. One
advantage of HRV based methodologies is that many  of
the commercial devices that are available perform auto-
they allow a relatively simple, non-invasive technique to be
applied, thus broadening the potential range of applications
for this form of measurement.

erved.
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The extraction and evaluation of physiologically relevant
information from HRV data is supported by both the time
and frequency domain methods [6].  The conventional fre-
quency domain measure is the power spectrum of HRV [3].
Consistently identified features of this spectrum are a low-
frequency (LF) component centered around 0.1 Hz (frequency
band between 0.04 and 0.15 Hz) and a high-frequency (HF)
component which usually appears in the frequency band
between 0.15 Hz and 0.5 Hz [3,7]. A large body of literature
suggests that HF spectrum may be a reliable marker of the
vagal control of heart rate in unstressed conditions and that
LF may be a marker of sympathetic activity, or combined
vagal and sympathetic activity, often encountered in relatively
stressful circumstances [8].  For this type of application, fre-
quency domain measures are thought to be more  selective
for evaluation of the relative contributions of sympathetic
and parasympathetic function in cardiac regulation than time
domain parameters.

The power spectrum assumes the stationarity of data and
delivers frequency domain parameters averaged over rela-
tively long recordings of HRV. Thus, the Task Force of the
European Society of Cardiology and the North American Soci-
ety of Pacing Electrophysiology recommend applying spectral
analysis to segments of 5-min [3].  In this context, the fre-
quency domain parameters are regarded as measures of
steady-state physiological conditions [9].

However, the steady-state measures are not suited to
capture the heterogeneous properties of heart-beats. Typi-
cal aspects of non-stationarity are the presence of “patchy”
patterns that change over time. The evidence of multiple
pseudo-periodic and aperiodic components in such spreads
of activity [10] has intensified the interest in the identification
of specific patterns of HRV that may indicate dynamic aspects
of the control functions of the autonomic nervous system.

The most common approach to this problem consists
in the estimation of a time-dependent spectrum of HRV
[11,12]. However, the time–frequency analysis of HRV signals
represents a major methodological challenge, because con-
ventional techniques of digital spectral analysis, such as the
fast Fourier transform (FFT) [13], are not suited to short-term
spectral decompositions. Among novel computational tools
that extend the application of classical Fourier integrals to
time–frequency analysis is the similar basis function (SBF)
algorithm [14]. This has the following advantages over con-
ventional FFT:

1. The transcription of the signal under analysis into a digi-
tal form accepts both uniform and non-uniform sampling
intervals.

2. The algorithm is applicable to signal segments of arbitrary
length due to an explicit treatment of discontinuities at
the boundaries of the integration intervals. This eliminates
the need for windows of spectral analysis, along with their
distorting impact.

In this paper we  use these properties of the SBF algorithm

to addresses the HRV time series as a non-stationary process.
Our aim was to develop algorithms of HRV time–frequency
analysis that provide a means to detect the major frequency
components and measure their frequency, timing and
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67

magnitude. A simultaneous consideration of characteris-
tic HRV patterns in both frequency and time domains is
expected to provide additional insights into the mechanisms
of autonomic control of heart function and may subsequently
be used to discriminate between different physiological
conditions in both research and clinical settings.

2.  Background

2.1.  The  power  spectrum  of  HRV

The conventional frequency domain characteristic of HRV is
the power spectrum (or spectral density) [3,7]. This and sim-
ilar frequency domain measures of HRV have found various
applications in a number of research and clinical studies [6].
Specific methodological problems with the estimation and
interpretation of the HRV power spectrum arise from the fact
that HRV data are not a traditional object of spectral analy-
sis. The tools of digital spectral analysis are usually applied to
the time series of different types of deterministic or stochastic
processes. By contrast, the HRV power spectrum is associated
not with the signal itself (the ECG) but the point process that
indicates the timing of the maximums of the R wave  in ECG
records, i.e. the occurrence times of the heart beats. Such a
process can be described by a train of Dirac delta functions
and transformed to the frequency domain in the form of the
“spectrum of counts” [15]. However, the major methods of HRV
spectral analysis deal not with the times of the heartbeats, but
rather with the inter-beat intervals that are derived from the
ECG and termed RR intervals.

Conceptually, the spectral analysis should be addressed to
some time function that describes how the length of the RR
interval evolves over time. Such a function cannot be sup-
ported by an exact analytical description, and its choice is one
of the central methodological challenges for unambiguous fre-
quency domain representation of HRV data. In general terms,
the sequence of RR intervals may be regarded as the sequence
of real numbers (f1, . . .,  fn, . . .,  fN), where fn is the length of the
RR interval associated with the heartbeat indexed by “n”, and
N is the number of intervals. The simplest approach to spectral
analysis regards (f1, . . .,  fn, . . .,  fN) as a time series, i.e. the sig-
nal samples taken at regular sampling intervals. On this basis,
the spectrum of intervals is defined by the discrete Fourier
transform (DFT), and computed numerically using the FFT [15].
However, the assumption of regularly spaced heart beats when
an actual timing is irregular, means that dual character of the
relationships between the time and the frequency domains
established by the forward and inverse Fourier transforms is
lost in this approach [16–18].

Intrinsically irregular intervals between heartbeats are
taken into account by the RR tachogram that represents
the succession of values of varying intervals occurring at
non-equidistant sampling times [17]. The problem with con-
ventional spectral analysis in this context is that the FFT
is applicable to 2n samples of a time series with regular

sampling intervals. Therefore, the RR tachogram must be re-
sampled using interpolating methods in order to estimate the
evenly spaced samples from the irregularly spaced samples.
A number of investigations indicate that interpolation errors

dx.doi.org/10.1016/j.cmpb.2012.01.002
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roduced by re-sampling may cause specific distortions of
he spectral estimates [17,18].  These errors, together with the
rrors induced by windowing and zero padding, introduce sig-
ificant uncertainty into the accuracy of the frequency domain
easures of HRV.
Apart from the FFT, autoregressive (AR) models and the

omb–Scargle periodogram method have been applied to HRV
pectral analysis [19,20].

The main advantage supporting the AR approach to HRV
pectral analysis is improved flexibility in relation to the
ength of analysis epoch and selection of sampling points.

 major drawback is a strong dependency of the accuracy of
pectral estimates on the order of the AR model. An adequate
election of this parameter is ambiguous because the validity
f the underlying assumptions has not as yet been proved [21].

The benefit of the Lomb–Scargle periodogram is that this
ethod directly calculates the power spectrum from an

nevenly sampled RR tachogram [20]. However, reliable perfor-
ance of the method depends on a number of conditions that

nclude specific relationships between the signal and noise.
 comparison of different methods of HRV spectral analysis
uggests that interpolation methods are better solutions than
he direct Lomb method [18].

.2.  SBF  algorithm

umerical algorithms developed in this study are sup-
orted by a series of preceding investigations that addressed
he problem of time–frequency analysis of non-stationary
iomedical signals [22–24].  Given the Fourier integrals as basic
omputational tools, the major problem is that these trans-
orms belong to a category of oscillatory integrals, and demand
pecial algorithms for numerical integration. The estimation
f trigonometric integrals with maximum degree of precision

s provided by Filon-type methods, based on the polynomial
xpansion of the signal to be transformed [25]. However, the
orresponding computational methods are not supported by
ffective algorithms and require tedious calculations. The
bjective guiding the development of the SBF algorithm was
o support the Filon-type method of integration by an effec-
ive computational solution [14]. The algorithm decomposes
he signal into the sum of self-similar finite elements with the
imple analytical form of the frequency spectrum. Simulta-
eous consideration of both the time and frequency domains
educes the entire issue of the Fourier transform calculations
o standard frequency domain manipulations with relatively
imple analytical functions.

. Design  considerations

he algorithmic design in this paper is focused on the develop-
ent of computational tools that support HRV time–frequency

nalysis through a simultaneous consideration of both the
ime and frequency domains. There are two related goals. The
rst is to transform selected segment of HRV data to the fre-

uency domain. This provides means for the time–frequency
nalysis, i.e. the analysis of the time dependent frequency
ontent of non-stationary HRV. However, short term spec-
ral analysis is highly sensitive to spectral leakage which
b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67 55

can distort spectral estimates. In this context, the result of
the time–frequency analysis is useless unless the accuracy of
spectral estimates can be judged. Thus, the second goal is to
verify the success of the first goal. For this purpose we use
inverse cosine or sine Fourier transform to restore the time
domain counterpart of the frequency domain solution, and
compare it with the initial time domain data.

We use the recipes of the SBF algorithm to support both
goals by a universal computational technique. The data to
which we apply the time to frequency transformation are
derived from sequential instants (t0, . . ., tm, . . ., tM) at which the
R waves  are peaking. Such point events occurring haphazardly
along a one dimensional time continuum may be described as
a univariate point process. To apply Fourier transforms, we
need to assign numbers to the event’s occurrence times, i.e.
to characterize each heart beat by a data point (tm, fm), where
fm is called a point event. Physically, we regard fm as the value
of some parameter f(t) used to characterize the heart beats.
A formal assumption is that fm = f(tm). Taken a series of data
points on the interval of interest, the general form of the data
for analysis is the finite sequence of the data points Ft = {(t0,
f0), . . .,  (tm, fm), . . .,  (tM, fM)}. Irrespective of the choice of the
point events, we  may regard Ft as a discrete form of a certain
continuous time function f(t) called the point event function
(PEF), and defined on the interval of finite length L = tM − t0.

Let tj and tk > tj be the boundary time points that define a
particular segment of the PEF. The complex spectrum of the
corresponding fragment of the PEF is defined by the following
continuous finite Fourier integral

F(ω) =
∫ tk

tj

f (t) exp(−iωt) dt, (1)

where i = √−1, ω = 2�f , and f is the frequency.
Alternatively, we  may describe the same fragment by the

function g(�) = f(t − tj), associated with the data points G� = {(�0,
g0), . . .,  (�i, gi), . . .,  (�N, gN)}, where �i = ti+j, gi = fi+j and N = k − j + 1..
The complex spectrum is given by

G(ω) =
∫ �

0

g(�) exp(−iω�) d�, (2)

where � = tk − tj.
In terms of real functions:

G(ω) = GC(ω) − iGS(ω),

where

GC(ω) =
∫ �

0

g(t) cos ωt dt, Gs(ω) =
∫ �

0

g(t) sin ωt dt. (3)

The amplitude spectrum of g(t), i.e. the module of the com-
plex spectrum, is

∣∣G(ω)
∣∣ =

√
G2

C(ω) + G2
S(ω). (4)
The time shift between f(t) and g(t) has no effect on the
amplitude spectrum, i.e.

∣∣F(ω)
∣∣ =

∣∣G(ω)
∣∣. This shows that

although the spectral analysis is applied to segments of

dx.doi.org/10.1016/j.cmpb.2012.01.002
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different length and timing, the computational framework is
essentially the same.

Both GC(ω) and GS(ω) contain information that allows
restoration of y(t) using the following inverse Fourier cosine
and sine transforms:

g(t) = 2
�

∫ ∞

0

GC(ω) cos ωt dt, (5)

g(t) = 2
�

∫ ∞

0

GS(ω) sin ωt dt. (6)

Theoretically, the Fourier integrals of finite extent function
g(t) must be infinite in the frequency domain. This explains
semi-infinite integration intervals in Eqs. (5) and (6).  How-
ever, because we  may associate g(t) with a physically realizable
stable system, the asymptotic behavior of the frequency char-
acteristics in the high frequency ranges is such that both GC(ω)
and GS(ω) decrease with increasing frequency. Therefore, it is
always possible to find an angular frequency  ̋ above which
GC(ω) and GS(ω) are negligibly small. On these grounds, the
approximants to g(t) may be estimated from the following
finite cosine and sine Fourier transforms:

g(t) ≈ gC(t) = 2
�

∫ ˝

0

GC(ω) cos ωt dt, (7)

g(t) ≈ gS(t) = 2
�

∫ ˝

0

GS(ω) sin ωt dt. (8)

Let (3) and (4) be the spectral characteristics computed from
the set of data points. We  use (7) and/or (8) in order to ascertain
the accuracy and reliability of the spectral estimates.

Comparison of these integrals with (3) shows that essen-
tially the same methods may be used to perform the
transformations from the time to frequency domain and vice
versa. Computationally, we must be able to estimate trigono-
metric integrals the general form of which is:

YC(u) =
∫ �

0

y(x) cos ux dx, (9)

YS(u) =
∫ �

0

y(x) sin ux dx. (10)

These integrals are the point of departure for design of the
HRV time–frequency analysis algorithms.

4.  Method

4.1.  Numerical  Fourier  transforms
We  address numerical estimation of (9) and (10) to the set of
data points Yx = {(x0, y0), . . .,  (xi, yi), . . .,  (xN, yN)} with x0 = 0
and xN = �. Using the basis functions of previously developed
SBF algorithm [14], we  establish the fundamental relationship
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67

between the data points and continuous y(x) using the sum of
finite elements

y(x) =
N−1∑
i=0

ai�i(x), (11)

where ai are the weighting coefficients, and �i(x) is a simi-
lar basis function (SBF). The SBF is defined by the similarity
relationship

�i(x) = r

(
x

xi+1

)
. (12)

This simple parameterised time scaling produces the fam-
ily of SBFs from a basic finite element

r(x) =
{

1 − x if 0 ≤ x ≤ 1
0 otherwise

termed “triangular basis function” (TBF). The TBF is a unit
right-angled triangle depicted in Fig. 1A.

With regard to the data points, y(x) is a piecewise linear
approximating function, defined by the following condition:

y(xi) = yi for i = 0, 1, . . . , N − 1.

A similar transition from the data points to a continuous
time function is used by resampling procedures of a number
of the HRV spectral analysis methods [15,17,18].  In this con-
text the y(x) serves as an interpolation function the goal of
which is to fill the intervals between the original data points
by equidistant samples. This remedy of matching the HRV
data to the demands of conventional FFT also includes the
addition of zeros (zero padding) to achieve 2n data points
[15].

The advantage of the SBF algorithm is that the procedures
of the spectral analysis are directly applied to the original data
points, and are free of resampling.

In terms of finite elements, the approximant (11) may be
presented in the form

y(x) = y0�0(x) +
N−1∑
i=1

yi�i(x), (13)

where ϕi(x) is a hat function.
Being a tool of the finite-element method [26], the hat func-

tion is defined as

�i(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − xi−1

xi − xi−1
, if xi−1 ≤ x < xi

xi+1 − x

xi+1 − xi
, if xi ≤ x < xi+1

0, otherwise

on the mesh x0 < x1 < . . . < xi < . . . < xN.
Fig. 2 exemplifies decomposition (13). The dotted lines con-

necting data points from 0 to 4 represent on the segment ‘ad’
the sum of the TBF (triangle a0b) and the hat functions (trian-

gles a1c, b2d and c3e) with vertexes at the data points from 1
to 3.

The comparison of (11) and (13) shows that hat functions
in (13) are replaced in (11) by TBFs. The geometrical principle

dx.doi.org/10.1016/j.cmpb.2012.01.002
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Fig. 1 – (A) Unit right-angled triangle. This finite element is the TBF from which an ensemble of similar basis functions is
deduced. (B) Shows decomposition of the hat function (triangle abc) into the sum of SBFs (triangles fhc, fed and fga). (C) The
curves Re and Im show the real and imaginary parts of the complex spectrum of the TBF, i.e. the functions (15) and (16),
r

f
g
a
A

F
(
p
p
e

espectively.

ound useful in this connection is illustrated by Fig. 1B. The
raph shows the decomposition of the hat function (triangle
bc) into the sum of three TBFs (triangles fhc, fed and fga).
pplication of this decomposition to all hat functions in
ig. 2 – Exemplifies the transition from the data points
filled circles 0–4) to finite elements: SBF (vertex at the data
oint 0) and the hat functions with vertexes at the data
oints from 1 to 3. The dotted line shows the sum of finite
lements.
(13) results in the following formula for the estimation of
interpolation coefficients

ai = ˛iyi − ˇi+1yi+1 + 	i+2yi+2, 0 ≤ i < N − 3
aN−2 = ˛N−2yN−2 − ˇN−1yN−1,

aN−1 = ˛N−1yN−1,

(14)

where

˛i = xi+1


xi+1
(0 ≤ i ≤ N − 1),

ˇi = xi

xi+1 + 
xi


xi+1
xi
(1 ≤ i ≤ N − 1),

	i = xi−1


xi
(2 ≤ i ≤ N − 1),


xi = xi − xi−1.

In the context of numerical solutions, the chief advantage
of the construction (11) is that cosine and sine Fourier integrals
from the TBF are expressed in an analytical form as

RC(u) =
∫ ∞

r(x) cos(ux)  dx = 1 − cos u

u2
, (15)
0

RS(u) =
∫ ∞

0

r(x) sin(ux) dx = u − sin u

u2
. (16)

dx.doi.org/10.1016/j.cmpb.2012.01.002
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Fig. 1C shows these functions.
According to the theory of Fourier transforms (similarity

theorem), the compression of the abscissa in the time domain
corresponds to the expansion of the abscissa plus the con-
traction of the ordinate in the frequency domain. Application
of these operations to the functions (15) and (16) allows us to
express Fourier transforms from (12) in the following form:

∫ ∞

0

�i(x) cos ux dx = xi+1RC(xi+1u),

∫ ∞

0

�i(x) sin ux dx = xi+1RS(xi+1u).

It follows rather straightforwardly from (11) that these for-
mulas reduce calculations of (9) and (10) to the following
standard operations with analytical functions (15) and (16)

YC(u) =
N−1∑
i=0

aixi+1
1 − cos(xi+1u)

(xi+1u)2
, (17)

YS(u) =
N−1∑
i=0

aixi+1
uxi+1 − sin(xi+1u)

(xi+1u)2
. (18)

After estimation of the weighting coefficients from (14),
these formulas are directly applied to the time points of the
PEF in question.

4.2.  Fragmentary  spectrum

The technique of numerical Fourier transform described above
provides means to express the complex spectrum (2) in terms
of its real and imaginary parts (3).  Each of these frequency
characteristics contains the full amplitude and phase infor-
mation necessary to restore the initial time domain function.
However, a complicated form of these functions is inconve-
nient for display and direct measurements of the amplitudes
of spectral components.

An appealing feature of the power spectrum is its ability
to provide direct measures of different spectral components
of the signal. For that reason the power spectrum is one of
the most frequently applied frequency domain descriptors
of HRV [3].  A major problem that opposes the analysis and
interpretation of the power spectrum estimates is that HRV
exhibits irregular patterns of activity, i.e. belongs to the cat-
egory of non-stationary processes [3,6]. The main point at
issue is that the power spectrum is defined in the field of
probability and statistics as the frequency domain measure
of a stationary random process [27]. Non-stationary processes
are not supported by a strict definition of the power spec-
trum. To accentuate ambiguity raised by this inconsistency,
suppose that F1(ω), F2(ω), . . . are the power spectra computed
over different segments of stochastic process f(t). If f(t) is sta-
tionary, spectral functions F1(ω), F2(ω), . . .,  may be regarded as

the samples of a single random function F(ω). In other words,
F1(ω), F2(ω), . . .,  appear as ensemble functions allied by some
probabilistic relationships. This concept is not applicable to
non-stationary HRV.
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67

To approach the problem of non-stationarity, we  associate
HRV with irregular stochastic process certain fragments of
which may possess special properties of functional signifi-
cance. To define this special class of PEF fragments in the
frequency domain, we  introduce a novel notion of the frag-
mentary spectrum that is a combination of the frequency and
time domain descriptors of the PEF. Using the same notations
as Eqs. (1)–(4), we regard |tk,tj| segment of the PEF G�. The
fragmentary spectrum is defined as

G(f, �, �) = �−1
∣∣G(2�f )

∣∣ , (19)

where � = tj and � = tk − tj. These parameters define the position
and length of the corresponding segment of the PEF.

Compared with the power spectrum, a major advantage of
the fragmentary spectrum is its ability to measure how spec-
tral estimates evolve over time. However, if the underlying
system is stationary, the fragmentary spectrum may be inde-
pendent of � and �. In this case the power spectrum is simply
P(f) = G2(f, �, �).

The question we now consider is how to link the frag-
mentary spectrum with different patterns of HRV. With regard
to the conventional power spectrum, measurements of spec-
tral characteristics regard “peak” as a marker of a functional
component. Physical and physiological interpretation of these
components has been supported by the assumption of sta-
tionarity, i.e. the presence of continuous permanent rhythms
of HRV [3,7,9].

By  contrast, using notions of non-stationary processes, we
can think of HRV as a reflection of discrete sources generat-
ing transient changes of inter-beat intervals. When we  find
a peak in the fragmentary spectrum G(f, �, �) at certain fre-
quency f = fM we know that the underlying signal contains an
oscillatory component with frequency fM in the time interval
from � to � + �. Given importance of oscillatory processes for
spectral analysis, we shall call the corresponding component
transient oscillatory component (TOC).

The resonant frequency serves as a primary marker of TOC.
However, the location and length of the TOC, i.e. � and �, are
not known in advance, and we need additional information for
an exact identification of TOC. For this purpose we  estimate
fragmentary spectra over a succession of different segments
collected from the time window running through the PEF.
Given the data points Gt = {(t0, y0), . . .,  (tm, ym), . . .,  (tM, yM)},
we define the length of the moving window by the number of
points p < M/2. The initial position of the window is defined by
a sliding pointer, which is placed at i = p. From this position the
pointer is moved within the data points until i takes the value
M − p. For each position of the pointer fragmentary spectrum
is estimated for preselected range of frequencies from FMIN

to FMAX. The maximum resonant frequency fM is regarded as
the dominant frequency of TOC while � and � parameters are
defined by the window position and length.

Suppose we  want to perform the moving window analysis
over the time scale but are uncertain what the window size
should be. We can start the procedure using a window of rela-

tively short duration and then stretch the window out a small
amount and compute another set of parameters, and so on,
gradually increasing the window size and computing another
set of frequency domain measures for each value of window

dx.doi.org/10.1016/j.cmpb.2012.01.002
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ize. Inspecting many  of these trials results in a compre-
ensive representation of the TOC in terms of its descriptive
arameters.

.3. RR  deltagram

n Section 3 we  have defined a general form of the data for
pectral analysis as a finite sequence of the data points in the
orm of the PEF Ft = {(t0, f0), . . .,  (tm, fm), . . .,  (tM, fM)}, where tm

m = 0,. . .,M)  is the occurrence time of the heart beats. Given
he inter-beat interval (RR interval) as a physical parame-
er of interest, the point event is expressed as fm = tm+1 − tm.
nder this condition, the Ft represents the conventional RR

achogram [17] also known as a discrete event series [3].
An alternative approach to the spectral analysis design is

upported by the view that the deviations of the RR intervals
rom the mean value rather than the length of the interval
tself are basic to the characterization of HRV. The conclusion
as been drawn that subtraction of the mean value of RR inter-
al from the time series before applying the FFT increases the
ensitivity of spectral estimates to the dynamics of HRV [18].
revious studies applied this technique after replacement of
rregularly spaced time points by regularly spaced time points.
ere we  approach digital spectral analysis in a way that avoids

esampling. We introduce the RR deltagram as a PEF defined
y the point event

m = 
tm − e(tm), (20)

here 
tm = tm − tm−1(m = 1, . . .,  M) and e(t) is the function that
efines the expected value of RR interval.

We use the technique of moving window averaging to
uild the procedure for estimation of expected values of RR

ntervals. Compared with conventional applications of mov-
ng window averaging [28], a specific aspect of the problem is
he non-even distribution of sampling intervals. This factor

ay induce a false high-frequency components in the spec-
rum of e(t). To overcome this problem, we have designed a
igital filtering algorithm which performs a multistep moving
indow averaging.

The algorithm deals with the sets of real numbers
1 = {e1

0, . . . , e1
m, . . . , e1

M},. . .,  Ek = {ek
0, . . . , ek

m, . . . , ek
M},. . .,

K = {eK
0 , . . . , eK

m, . . . , eK
M}, where the subscript (m from 0 to

) denotes the number of the beat, and the superscript (k
rom 1 to K) indicates the number of step in the procedure of
veraging.

The set Ek is the output of the kth step which further serves
s an input of the (k + 1)th step. To initiate this recursion we
efine the first set as the succession of 
tm intervals from

20), i.e. e1
m = 
tm. The transition from the set Ek to the set

k+1 (k = 1,. . .,K − 1) during recursion is defined by conventional
rocedure of the moving averaging with equal weights:

k+1
m = 1

nL + nR + 1

nR∑
j=−nL

ek
m+j, (21)
here nL and nR are the numbers of the points to the left and
ight of the center of the window. The number of the data
oints captured by the window is NW = nL + nR + 1.
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The practical criterion that is the basis by which we  accept
a multistep average as a stable solution is the condition

Ek+1 < TE, where


Ek+1 = 1
nL + nR + 1

M∑
m=0

∣∣ek+1
m − ek

m

∣∣
ek

m

,

is the mean of the absolute value of the normalised residual
between the values of “e” at k and k + 1 steps of recursion, and
TE is a threshold value for residual (default option is 0.01).

4.4.  Inverse  RR  deltagram

The necessity of direct evaluation of the accuracy of the time
to frequency transformations is critical to the time–frequency
analysis because shortening of the epoch of analysis may dras-
tically increase the role of factors, such as spectral leakage,
that distort the form of the spectrum.

Using inverse Fourier transforms, our approach to the prob-
lem is straightforward. The question we pose is how accurate
is the numerically computed fragmentary spectrum as a fre-
quency domain counterpart of the corresponding deltagram?
Let GC(ω) and GS(ω) in (7) and (8) represent the real and imagi-
nary parts of the fragmentary spectrum in question. We may
expect that numerical estimation of both (7) and (8) should
reasonably restore the RR deltagram, although some error is
involved.

This provides a universal method for evaluation of errors
using the forward Fourier transform, followed by the inverse
Fourier transform. The first step is the transition from the time
to frequency domain using the forward FT. The second step
is the restoration of the transient response from numerical
frequency characteristics using the inverse FT. With regard
to (7) and (8),  we  evaluate the accuracy of inverse transforms
by residual functions rC(t) = g(t) − gC(t) and rS(t) = g(t) − gS(t). The
residuals accumulate the errors of the forward time to fre-
quency transformation (2) and inverse the frequency to time
transformation (5) or (6).  We can write this as

rC(t) = rFC(t) + rIC(t) and rS(t) = rFS(t) + rIS(t), (22)

where rFC(t) and rIC(t) are associated with the forward and
inverse cosine Fourier transforms, and rFS(t) and rIS(t) are asso-
ciated with the forward and inverse sine Fourier transforms.

On these grounds, we use numerical estimation of the
inverse Fourier transforms as a tool to test consistency
between the time domain PEF and its frequency domain coun-
terparts.

5. Results

The aim of this section was to ensure that developed algo-
rithms worked properly and provided time dependent spectral
measures of non-stationary HRV capable to detect and identify
specific patterns of HRV. For this purpose we  set up a technique
for non-invasive recordings of HRV data on healthy subjects

using a “Zephyr Bioharness” device for simultaneous wireless
monitoring of ECG, heart rate and breathing waveforms. The
measuring part of this device is strapped on like a belt and
is a non-invasive instrument suitable for use in a naturalistic
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Fig. 3 – (A) Shows the deltagram (black solid line) and
tachogram (grey line) based on 331 s record of 425
successive RR intervals. Dotted line: trajectory of expected
values of RR intervals computed by 5 step procedure of
moving averaging (21) with nL = nR = 6. The segments from 1
to 4 indicate periods of controlled breathing. (B) The black
and grey lines show the fragmentary spectra of the
deltagram and tachogram from (A). Here, and throughout
the following illustrations, the RR measures for both
tachograms and deltagrams are taken in milliseconds.
Accordingly, the units of fragmentary spectrum (FS) are also
milliseconds. (C) An extract from (B) which shows the
spectra for a narrow frequency range from 0.05 to 0.2 Hz
60  c o m p u t e r m e t h o d s a n d p r o g r a 

setting. From the data produced by the microprocessor of the
device, we  selected for further off-line processing the values
of RR intervals, digitized ECG and breathing waveforms.

The computer implementation of the developed algo-
rithms for HRV data processing has been supported by
specially designed software “RR SBF” using the object Pascal
language of Embarcadero Delphi 2010. The program contains
a number of routines that support major algorithms described
in the paper. Launching the data transfers and various com-
putational tasks is governed by graphical user interface with
windows, menus, charts and dialogs.

In order to detect and investigate specific patterns of HRV,
the data were monitored on 8 healthy subjects under differ-
ent conditions that include the rest, spoken conversation and
controlled breathing.

5.1.  Computer  experiments  with  RR  deltagrams

The aim of this section is a simultaneous consideration of HRV
measures in both the time and frequency domains and the
analysis of errors in these two domains. Based on the analysis
of different sequences of RR intervals monitored under dif-
ferent experimental conditions, our objective is to show the
advantages of the introduced RR deltagram over conventional
RR tachogram. The point is that boundary discontinuities of
conventional RR tachogram may have distorting impact on the
transforms. The following analysis of this issue in computer
experiments is general, and does not depend on the experi-
mental conditions supporting the HRV monitoring. Our focus
on the conditions of controlled breathing is explained by the
fact that coupling of the heart beats with respiratory rhythms
provides means to emphasize particular frequencies of the
HRV spectra.

During the experiments with controlled breathing the sub-
ject used a metronome to count breaths while simultaneous
recordings of breathing and RR intervals were done. Record-
ings were done at rest, during spoken conversation and during
controlled respiration at breathing rates of approximately 5
per minute, 10 per minute, 15 per minute and 30 per minute.
At each of these conditions recordings were done for silent
breathing (1 min) and breathing with vocalization (counting
out loud) for a further minute.

Given typical conditions of controlled breathing of a
healthy male, the grey and black lines in Fig. 3A shows the RR
tachogram and RR deltagram based on succession of 425 RR
intervals (331 s interval). The segments 1–4 of these record-
ing indicate periods of controlled breathing at the rates of
5 (segments 1 and 2) and 10 (segments 3 and 4) breaths per
minute (bpm). The length of each segment is approximately
1 min. The segments 1 and 3 correspond to silent breathing,
and segments 2 and 4 to the breathing with vocalization.

To transfer these data to the frequency domain, we
need to estimate fragmentary spectrum (19). Using devel-
oped algorithms, this is a standard task that is performed
by the estimation of the weighting coefficients from (14) and
calculation of the fragmentary spectra using (17)–(19). The cor-

responding fragmentary spectra are shown in Fig. 3B. The
logarithmic scale of frequencies provides the means to dis-
play the spectrum for a wide range of frequencies from 0.001
to 1 Hz.
using natural ordinate scale.

To explain the forms of spectra, we note that in general
terms the spectral analysis is associated with continuous time
function f(t) that extends over an infinite time scale. Conceptu-
ally, we may regard the RR tachogram as the set of the samples
of such process on a finite length interval. This finite length
extract from f(t) may be described as w(t) = �(t) · f (t), where
�(t) is a rectangular pulse with a unit amplitude over the finite
length analysis interval [0,�].
Fig. 4 exemplifies w(t) (grey line), and shows how the RR
tachogram looks over an extended time scale. In the context
of continuous Fourier integrals, we deal with function that
deviates from zero only over the analysis interval. These

dx.doi.org/10.1016/j.cmpb.2012.01.002
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Fig. 4 – (A) Gives a visual impression of the tachogram as a
finite extent function comparable with rectangle. In terms
of the formula (23), the parameters of the rectangle are:
A = 781 ms  (mean RR interval) and � = 331 s (length of the
tachogram). (B) Compares fragmentary spectra of the
tachogram and rectangle. The shadowed ellipse shows the
region which reflects oscillatory components of the
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sources of oscillatory components. For this purpose we  now
achogram.

ransitions create discontinuities of the process at the ends
f the analysis interval.

If the length of RR intervals in question is constant, the
achogram degenerates into the rectangular impulse (solid
lack line) the fragmentary spectrum of which is expressed
nalytically in the form

(f ) = A sinc(��f ), (23)

here A and � are the amplitude and duration of the impulse,
espectively.

For typical RR tachogram, the relative deviations of RR
ntervals from the mean value usually do not exceed 20–30%.
or example, the mean value of RR interval of the tachogram
n Fig. 4A is 781 ms,  and the absolute values of the deviations
o not exceed 25% of the mean. Under these conditions the
R tachogram is close to the rectangle shown in Fig. 4A by
he black line. Fig. 4B shows similarity of corresponding frag-

entary spectra. Consequently, the results of the tachogram
pectral analysis may be completely dominated by irrelevant
omponent (23) rather than HRV during the analysis interval.

In the general context of spectral analysis, irrelevant com-

onents are usually associated with spectral leakage [13]. The
pectral distortions are due to a Fourier series model of data,
he theoretical basis of the DFT and FFT. The point is that
b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67 61

the analytical signals are defined over an infinite interval,
while digitized signals are always finite in time. This distinc-
tion produces physically inconsistent components the most
prominent of which is spectral leakage. Conventional reduc-
tion of spectral distortions using the windows for harmonic
analysis is only effective for long-term signals. Consequently,
the removal of irrelevant components in the context of the
time–frequency analysis necessitates the change of the the-
oretical background from Fourier series to more  adequate
technique of integral transforms.

Previous studies employed a continuous wavelet transform
as a toolkit to handle dynamical changes of HRV [16]. However,
this approach comes with the significant cost of a loss of con-
ventional frequency domain measures. Our method remains
in the field of Fourier methods, and consists in the change
of the theoretical background from Fourier series to Fourier
integrals using a Filon-type quadrature as a computational
basis [14,25].  The ability of the method to handle signal seg-
ments of arbitrary length is seen from the fact that analytical
model (11) is composed from finite elements, and is in exact
proximity with the finite length interval over which the PEF
is defined. The SBF algorithm permits an explicit treatment
of discontinuities at the boundary points. In this context,
the fragmentary spectrum is equally applicable with testable
accuracy to both the tachogram and deltagram.

Using the RR deltagram instead of RR tachogram, we  elimi-
nate the component (23) from the spectral analysis. Given the
spectra of the deltagram and tachogram for wide range of fre-
quencies in Fig. 3B, we note striking differences between the
spectra in the ranges of low and high frequencies. Compara-
ble parts of the spectra belong to a relatively narrow frequency
range from 0.05 to 0.2 Hz. Fig. 3C shows these parts of the spec-
tra in a more  detail for the frequency diapason from 0.05 to
0.2 Hz using a natural scale of frequencies. The point which
emerges is that the fragmentary spectrum of the tachogram
contains multiple peaks some of which are likely to be relevant
to the component (23). The form of the fragmentary spectrum
of the deltagram is more  informative, and contains 3 major
resonant peaks indicated by the arrows 1, 2 and 3. The cor-
responding resonant frequencies are: 1, 0.079 Hz; 2, 0.089 Hz;
3, 0.106 Hz. However, the justification of these peaks as func-
tionally meaningful components is complicated by the lack
of global stationarity of the data under the analysis. A non-
homogenous character of the deltagram is easily recognised
by the visual analysis. It is clearly seen from Fig. 3A that slow
high amplitude oscillatory components (segments 1 and 2) are
followed by faster oscillatory components with significantly
lower amplitudes (segments 3 and 4). Given that HRV develops
over these segments simultaneously with controlled respira-
tion, we may associate oscillatory components of HRV with the
breathing rhythms of 5 bpm (0.083 Hz) and 10 bpm (0.167 Hz),
respectively. However, there is no evidence of a 10 bpm rhythm
in the profile of the fragmentary spectrum. Either of the peaks
1 and 2 may be related to the respiratory rhythms of 5 bpm. To
make unambiguous conclusions, we obviously need a more
precise analysis which can tell us about the timing of the
apply spectral analysis to the segments 1 and 3 (controlled
silent breathing) in Fig. 3A. The corresponding RR deltagrams
are presented in Fig. 5A and B by the data points displayed as

dx.doi.org/10.1016/j.cmpb.2012.01.002


62  c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67

Fig. 5 – (A) The segment 1 of the deltagram from Fig. 3A is
displayed by the filled circles. The time to frequency and
frequency to time Fourier transformations of these data
points restore initial discrete deltagram in the form of
continuous time function (solid line). (B) The filled circles
display the segment 3 of the deltagram from Fig. 3A. The
dotted line shows continuous deltagram estimated by the
time to frequency and vice versa Fourier transforms. (C)
The solid and dotted lines show the fragmentary spectra
computed from the data points displayed in (A) and (B),
respectively. The vertical lines show dominant resonant
peaks located in the frequency ranges of controlled

Fig. 6 – Upper block diagram shows that forward Fourier
transform produces the two frequency domain
counterparts of discrete RR deltagram. From these
functions inverse cosine Fourier transform (CFT) and
inverse sine Fourier transform (SFT) restore original
deltagram in the form of continuous time function. (A) The
solid line is the fragmentary spectrum reproduced from
Fig. 5C. The dotted and grey lines show the real and
imaginary parts of the corresponding complex spectrum.
(B) Shows continuous deltagrams computed from the real
breathing.

the filled circles. It is important to note that we have defined
the RR deltagram as a discrete finite extent function. In this
context the discrete sequence of the data points is an exact
graphical form of RR deltagram.

The fragmentary spectra of the deltagrams are shown in
Fig. 5C. It is widely accepted to regard a peak in the Fourier
spectrum as the indication of an oscillatory component in the
temporal structure of the underlying signal. Multiple peaks
do not necessarily mean that several oscillations are present.
They can be related to different factors that diverge a real
oscillatory component from an ideal sine wave.

A characteristic feature of both spectra is the presence

of well-pronounced resonant peaks: at 0.088 Hz for the seg-
ment 1 and at 0.178 Hz for the segment 3. In both spectra
these peaks dominate over multiple peaks with significantly
and imaginary parts of the complex spectrum.

smaller amplitudes. Fragmentary spectra from segments 2
and 4 (controlled breathing with vocalization) have similar res-
onant peaks at the frequencies 0.08 and 0.177 Hz, respectively.
The agreement between the frequencies of these dominant
peaks of fragmentary spectra, and the frequencies 0.083 and
0.167 Hz of the corresponding breathing rhythms leads us to
conclude that we  are indeed observing a coordination of car-
diac and respiratory systems.

The reconstruction of inverse RR deltagram using inverse
Fourier transforms is the further step toward the establish-
ment of the links between the time and frequency domains
of the signal. The solid line in Fig. 5A and dotted line in B
are the inverse deltagrams computed from the real parts of
the corresponding complex spectra. By contrast to the digital
RR deltagram, the inverse RR deltagram can be computed at
arbitrary chosen time points, and thus may be treated as a
continuous time function. From this figure, we  see an excel-
lent agreement of continuous deltagram with the data points
of original discrete RR deltagram.

The block diagram in Fig. 6 illustrates the major steps
through which a discrete RR deltagram is transformed into the

form of a continuous time function. An essential point is that
the time to frequency transformation produces the two  fre-
quency domain counterparts of the original deltagram. Both

dx.doi.org/10.1016/j.cmpb.2012.01.002
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he real and imaginary parts of the complex spectrum con-
ain full amount of amplitude and phase information which
s necessary to restore the original time function. Given the RR
eltagram from Fig. 5A, Fig. 6A exemplifies the real and imag-

nary parts of the corresponding complex spectrum. These
unctions behave in a more  complex manner than the frag-

entary spectrum (solid line) reproduced from Fig. 5C.
For the purpose of inverse transformations, the real and

maginary part functions were presented by the sequences of
venly spaced samples in the logarithmic scale of frequencies
xtending from 0.001 to 1 Hz. The sampling rate was estab-
ished at the level that provided 200 samples per decade, i.e.
verall 601 sample for each function. Standard calculations of
umerical Fourier transforms have been facilitated by effec-
ive procedures of the fast SBF algorithm [14].

Fig. 6B shows inverse RR deltagrams computed from the
eal and imaginary part functions. In the scales of this fig-
re the plots of numerical solutions are indistinguishable one
rom another.

The definition of inverse RR deltagram specifies accuracy
f inverse transforms by the components rIC(t) and rIS(t) in
he error functions (22). A practical coincidence of numerical
olutions produced by the real and imaginary part functions
uggests that the errors of inverse transforms are negligibly
mall compared with the errors of the estimates of the frag-
entary spectra. Therefore, a low level of summary errors

rovides evidence of reliability and very satisfactory accuracy
ith which the developed algorithms estimate fragmentary

pectra.

.2.  Identification  of  a  transient  oscillatory  component

ere we  consider ability of the time–frequency analysis to
etect and identify specific TOC of HRV using the dominant
requency as descriptive frequency domain measure of the
ragmentary spectrum. Given conditions of controlled breath-
ng, Fig. 7 shows the deltagram of heartbeats on the 200 s
nterval during which the breathing rate of 15 bpm (segment 1)
as followed by the breathing rate of 30 bpm (segment 3). The

ength of each breathing interval was about 1 min. The frag-
entary spectra computed from these segments are shown

n Fig. 7B and C by the solid lines. The fragmentary spectra
ere also computed from shorter segments 2 and 4, and dis-
layed in Fig. 7B and C by the grey lines. The vertical dashed

ines indicate spectral peaks the frequencies of which can be
ssociated with the frequencies of breathing. Thus, the chang-
ng profiles of fragmentary spectra reveal the frequency and
iming of oscillatory components which can be unambigu-
usly associated with the rhythms of controlled breathing.
his finding of TOCs is consistent with the evidence of strong
oupling between the rhythms of respiration and HRV sup-
orted by different quantitative methods [29,30].  Physiological
spects of this paradigm are known as the respiratory sinus
rrhythmia [8].

Comparison of the fragmentary spectra from Fig. 5C, Fig. 7B
nd C shows that amplitudes of resonant peaks associated

ith controlled breathing decrease with increase of the fre-
uency. This development is accompanied by progressive
omplication of spectral characteristics. Fig. 5C shows that res-
nant peak induced by the breathing rhythm of approximately
b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67 63

5 bpm (0.088 Hz resonant peak) is a dominant component of
the fragmentary spectrum. By contrast, the resonant peaks
associated with 15 and 30 bpm breathing rhythms (Fig. 7B and
C) are mixed with a number of transient components the ori-
gins of which is difficult to trace. The change of the parameters
of the fragmentary spectrum has significant effect on the spec-
tral estimates, particularly the amplitude of the spectral peak
underlying the TOC. In this situation the resonant frequency
appears as a relatively stable parameter. This supports a dom-
inant resonant frequency as a descriptive parameter of TOC.

The deltagram used to exemplify the temporal evolution of
this parameter, is illustrated by Fig. 8A. This is a piece of the
deltagram from Fig. 3A which includes the segments 2 and
3. The moving window analysis has been supported by the
following parameters:

• Initial and final positions of the pointer: sample 1 (t = 0) and
sample 210 (t = 165 s).

• Increment for the change of pointer position: 1.
• The range of the tested frequencies: from 0.04 to 0.5 Hz.
• Sampling rate in the logarithmic scale: 200 samples per

decade.

These parameters were implemented in different trials
using windows with different numbers of data points. Because
the time points of the RR deltagram are non-uniformly spaced,
the length of the window may take different values depending
on the position of the pointer. During each trial the pointer
takes the positions of subsequent time points of the delt-
agram, and at each point the frequency domain routines
calculate the fragmentary spectrum for the frequencies of
interest from 0.04 to 0.5 Hz (230 points), and estimate its
maximum value. The frequency of this largest resonant peak
supports each data point of the tachogram through the value
of the dominant resonant frequency.

Fig. 8B shows the plots of dominant frequencies which were
obtained using 50 (solid line) and 40 (dotted line) point win-
dows. These are typical results which indicate that moving
window fragmentary spectral analysis provides stable results,
and reliably identifies time–frequency parameters of TOCs.

The choice of the window parameters should be linked to
the expected frequency of TOCs. Given M point window, the
value of its mean length may be evaluated as TW = M · RR,
where RR is the mean of the RR intervals in the underlying
deltagram. For the deltagram from Fig. 8A RR ≈ 0.8 s. Con-
sequently, the mean lengths of 40 and 50 point windows
are approximately 32 and 40 s. Computer experiments with
different window parameters suggest that TW > 3 TD may be
regarded as condition that provides reliable identification of
TOC with dominant frequency fD = 1/TD, where TD is the period
of the oscillation. In this context, Fig. 8B indicates that both 40
and 50 point windows provide similar results.

The distributions of dominant frequencies are summarised
by the histogram in Fig. 8C. The manner in which the distribu-
tions develop clearly indicates the two groups of frequencies

which are separated by the dashed vertical line. The mean
frequencies for the low frequency range are: 0.08 Hz (123
samples, 50 point window), and 0.082 Hz  (124 samples, 40
point window). The similar data for the high frequency range:

dx.doi.org/10.1016/j.cmpb.2012.01.002
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Fig. 7 – (A) Deltagram based on 200 s record of 250 successive RR intervals. Segments 1 and 3 indicate two successive
periods of controlled breathing with 15 bpm and 30 bpm rates. Segments 2 and 4 specify shorter segments within each of
these periods. (B) Black and grey lines show fragmentary spectra computed from segments 1 and 2. (C) Black and grey lines
show fragmentary spectra computed from segments 3 and 4.

Fig. 8 – Illustrates the identification of transient oscillatory components of HRV induced by controlled breathing. (A) 210 data
point RR deltagram. The segments highlighted by the bold dotted and solid lines show periods of controlled breathing with
the rates of 5 and 10 bpm. (B) Shows dominant frequencies of the fragmentary spectra estimated by a moving window
procedure with 50 (solid line) and 40 (dotted line) point windows. (C) Histogram with 0.01 Hz bin shows distributions of the
estimated dominant frequencies. The height of column is the number of dominant frequencies identified within the
corresponding bin.
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Fig. 9 – (A) Shows the trajectory of dominant frequencies estimated by the fragmentary spectral analysis from 300 s RR
deltagram using 50 point moving window. (B) Illustrates the distribution of dominant frequencies in the same manner as
the histogram in the previous figure. (C) Illustrates durations of TOCs with dominant LF and HF components identified from
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eal-life HRV data of 8 healthy subjects. For each subject the

.182 Hz (87 samples, 50 point window), 0.181 Hz (86 samples,
0 point window). We have two good reasons for considering
he dominant frequency as a robust marker of TOC. One is the
act that estimates of dominant frequencies are remarkably
table under unavoidable amplitude variations of the TOCs.
ur other reason for appreciation of this marker is stabil-

ty of the estimates obtained from the windows of different
ength.

Fig. 9 shows similar results for HRV recorded under the
eal-life, i.e. uncontrolled conditions. In this case the moving
indow analysis identifies multiple TOCs of different frequen-

ies, duration and timing. These TOCs may be regarded as
uasi-stationary elements of non-stationary HRV. An impor-
ant finding is that dominant frequencies of these elements

ay be associated in some cases with conventional LF and
F frequency bands of HRV. A typical situation of this kind is

llustrated by Fig. 9. The trajectory of dominant frequencies in
ig. 9A shows the results of the moving window fragmentary
pectral analysis of 300 s RR deltagram (468 data points).

The histogram in Fig. 9B shows that distribution of dom-
nant frequencies can be divided into the two distinct parts
eparated by the vertical dashed line. The mean dominant fre-

uency for the low frequency range is 0.083 Hz (447 samples).
or the high frequency range the mean dominant frequency
s 0.187 Hz (21 samples). These mean frequencies belong to
e type of the line is used for LF and HF ranges.

functionally meaningful LF and HF bands identified in the
studies of HRV power spectra [3,7,9].

The elements of LF and HF bands have been considered
in the previous studies as continuous processes produced by
stationary systems. An important advantage of our approach
is that division of the deltagram into TOCs provides means to
disclose the temporal dynamics of LF and HF elements. We
illustrate this capability of the method using the real-life HRV
data from 8 healthy subjects participated in the study. For each
subject the moving window analysis (20 point window) was
applied to 5 min  segment of the deltagram. Given TOC at par-
ticular position of the window, the dominant frequency in the
range from 0.04 to 0.13 Hz was qualified as LF element, and in
the range from 0.135 to 0.5 Hz as HF element. Using identified
ensembles of LF and HF elements, for each subject the mean
dominant frequencies have been estimated. These frequen-
cies are indicated in Fig. 9C by vertical lines, separately for LF
and HF ranges. The height of the line shows the percent of
the time, relative to the length of the deltagram, during which
the corresponding elements were identified. This evidence
of complex time-varying properties of HF and LF elements
indicates that cardiovascular regulatory mechanisms are acti-

vated at different time instants, and can be associated with
different control scenarios. The consistent relationship is the
longer durations of LF elements (mean = 64.5, variance = 7.3)
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compared with durations of HF elements (mean = 30.2, vari-
ance = 7.9).

6.  Discussion

This work has focused on the development of new methods
for extracting information from HRV data using simultaneous
consideration of HRV measures in both the time and frequency
domains. The necessity for significant improvements of the
methods of HRV spectral analysis relates to the fact that the
power spectrum, the recommended and most commonly used
frequency domain characteristic of HRV [3],  is a concept and
tool addressed to stationary processes, whereas in fact, the
consideration of HRV as a stationary process is a gross over-
simplification.

Over recent years time–frequency analysis has emerged
as the most favoured approach to improve the analysis
and interpretation of the changing spectral composition of
non-stationary HRV [9,11,12]. Being underpinned by ideas of
the time–frequency analysis, the design of main algorithms
reported in this paper depended critically on the method-
ological innovation of short time spectral analysis provided
by the SBF algorithm [14]. The problem is that short term
spectral analysis is highly sensitive to spectral leakage that
can cause totally unacceptable distortions of the spectral
estimates. Therefore, the added spectral information gained
needs to be balanced by a full appreciation of the accuracy
of spectral estimates. Conventional evaluation of numerical
algorithms consists in comparison of computational results
with theoretical models. Unfortunately, there is insufficient
detailed physiological knowledge to describe HRV in terms of
adequate mathematical models pertinent for both the time
and frequency domains. Artificial time-domain sequences of
RR intervals used in the previous studies to test the algo-
rithms are not supported by the corresponding frequency
domain solutions [9,10,17,18]. There is simply no frequency
domain “gold standard” to which the HRV spectral estimates
can be compared to establish the veracity of different algo-
rithms.

Since the frequency domain judgements are not available,
we have relocated the analysis of accuracy from the frequency
to the time domain. This was made using the convertibil-
ity of the time to frequency and frequency to time Fourier
transforms. Once the spectrum is calculated, the inverse
transform recovers the original function and reveals compu-
tational accuracy. According to this analysis, we demonstrate
that the accuracy with which the original function is recov-
ered from the fragmentary spectrum is very satisfactory and
may be regarded as strongly supportive of the suitability of
the developed algorithms for the time–frequency analysis of
HRV. Thus, the fragmentary spectrum introduced in this study
allows high resolution of the signal in the frequency plane,
which is necessary for the accurate identification and parti-
tioning of pertinent components of HRV. In this way both the
frequency content, timing and duration of HRV segment of

interest can be captured together by the fragmentary spec-
trum.

However, it is important to note that extraction of short
time fragments from conventional RR tachogram creates a
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 53–67

situation illustrated by Fig. 4. It appears that the time func-
tion to be transformed is close to the rectangular pulse. The
corresponding spectrum dominates in the results of short
time–frequency analysis. We  overcome this problem by the
introduction of the RR deltagram. The expected trajectory
of RR intervals is estimated by the algorithm of a multistep
moving window averaging by which we extend conventional
moving window averaging to the treatment of a non-evenly
sampled signal in question.

These refinements in the technique of HRV non-stationary
spectral analysis provide means for better recognition and
understanding of the sources of the different oscillatory
components of HRV. The previous solutions based on the
measurements of the power spectrum are limited by con-
straints imposed by the condition of stationarity, and include
two compulsory assumptions. First, the component is con-
tinuously produced by a system the parameters of which
remain unchanged during the whole epoch of analysis. Sec-
ond, HRV develops via a process of linear summation of
different components generated by functionally independent
sources.

These backgrounds have shaped virtually every aspect
of conventional HRV spectral analysis, from the types of
explanations proposed for functional and clinical signifi-
cance of power spectra, to the way in which the HRV
is reconstructed in computer simulations [9,17]. However,
converging evidence from empirical observations suggests
that cardiovascular oscillations are complex and muta-
ble, and various cardiovascular control scenarios may
be activated at different time instants, and hold fea-
tures that reflect the underlying physiological mechanisms
[31].

The coupling between respiratory and cardiac systems has
been described historically as respiratory sinus arrhythmia
[8]. The experimental data obtained in this study in con-
trolled breathing conditions show that the breathing rhythm
is reflected in the RR deltagram by an oscillatory compo-
nent of the corresponding frequency. If the breathing rate is
unchanged during several breath periods, the induced oscil-
latory component plays a dominant role in the profile of
the corresponding fragmentary spectrum. Therefore, regu-
lar breathing is able to suppress the harmonic components
from LF or/and HF ranges. This finding of irregularities in
the generation of oscillatory components from LF and HF
ranges is further supported by the experimental data from
uncontrolled, real-life conditions. Although in some instances
the transient oscillations are most pronounced in LF and HF
ranges, more  typically the temporal overlap of corresponding
activities is highly complex and irregular.

More studies will be needed to take advantage of the power
of novel fragmentary spectral analysis techniques. An impor-
tant goal is devising joint time–frequency distributions that
play a crucial role in the understanding of time varying spec-
tra [32]. Being based on physical considerations of underlying
processes, the design of such distributions is supported by
remarkable variety of heuristic approaches. Our finding of a

specific oscillatory component of HRV linked to the rhythm
of respiration may serve as a guideline to a specific distribu-
tion. The results presented in this paper provide the core of
the approach.
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