
Numer Algor (2010) 54:73–100
DOI 10.1007/s11075-009-9324-x

ORIGINAL PAPER

Similar basis function algorithm for numerical
estimation of Fourier integrals

Dmitriy Melkonian

Received: 14 September 2008 / Accepted: 29 July 2009 /
Published online: 19 August 2009
© Springer Science + Business Media, LLC 2009

Abstract The methodological difficulties of estimating Fourier integrals us-
ing the fast Fourier transform (FFT) algorithm have intensified the interest
in an alternative approach based on the Filon’s method of computing the
trigonometric integrals. Following this approach, we introduce in this paper
a similar basis function (SBF) algorithm that decomposes the function to be
transformed into the sum of finite elements termed “similar basis functions”.
Due to a simple analytical form of SBF, the reassignment of the SBFs’
similarity relationships into the transformation domain reduces the estimation
of the Fourier integrals to a number of standard computational procedures.
The SBF algorithm is capable to deal with both uniform and non-uniform
samples of the function under analysis. Using this opportunity, we extend a
general SBF algorithm by a fast SBF algorithm which deals with exponentially
increasing sampling intervals. The efficiency and the accuracy of the method
are illustrated by computer experiments with frequency characteristics and
transient responses of a typical dynamic system.

Keywords Fourier integral · Fast Fourier transform · Filon quadrature ·
Similar basis functions · Frequency response characteristics ·
Transient waveforms

1 Introduction

The Fourier series and integrals are the basic theoretical and computational
tools in almost every branch of science and engineering. One of the classical

D. Melkonian (B)
Brain Dynamics Centre, Westmead Millenium Institute and Westmead Hospital,
Acacia House, Westmead Hospital, Westmead NSW 2145, Australia
e-mail: dmitri@psychiat.usyd.edu.au

74 Numer Algor (2010) 54:73–100

applications of the Fourier integrals is the frequency domain analysis of
dynamic systems [8]. As in almost all fields of Fourier analysis, thinking in
terms of sine functions is central to this application. The frequency response
methods draw on the fact that it is very easy to describe what happens
with the sine function when it passes through a linear time-invariant system.
If the input of the system is a sine wave, the output is another sine wave
of the same frequency, with different amplitude and a phase shift. The ratio
of the output amplitude to the input amplitude is the gain. Consequently, at
a given frequency the transfer of the input sine function by the system can
be described by just two parameters: gain and phase. The dependencies of
gain and phase on the frequency constitute a frequency transfer function. The
ability of Fourier integral to provide this frequency domain counterpart of the
time domain transient is important because it converts calculus: differentiation
and integration in the time domain – into algebra: multiplication and division
in the frequency domain. On the basis of this principle, the frequency domain
methods of linear system analysis have been developed [2]. The methods
constitute a significant part of the theories of control and communication
systems, circuit analysis, signal and image processing, biological cybernetics.
Many aspects of the theory and methods have been modified for analysis and
design of wider classes of dynamic systems, particularly some types of time-
varying [32] and non-linear systems [9].

With the use of modern computing technology, the frequency domain
methods became not only the theoretical framework of signal and system
analysis, but also a digital data processing tool for two important problems:
(1) the estimation of system’s frequency characteristics from transient re-
sponses, (2) the estimation of transient waveforms from the frequency char-
acteristics of the system. One of the latest developments of these methods is a
time-frequency analysis of non-stationary signals and systems [10].

The most readily available technique used for estimation of Fourier in-
tegrals in these applications is a computationally efficient algorithm of fast
Fourier transform (FFT) [28]. The critical aspect of this approach is that the
FFT is supported by a Fourier series model of the data [11]. This distinction
with Fourier integral poses a number of limitations, the most important of
which is that the FFT is applied to 2n equidistant points of the function to
be transformed. The integer “n” and the sampling interval define the set of
equidistant points at which the transformation results are computed. A strict
grid of computational points creates a number of limitations and methodolog-
ical difficulties. For example, it is incompatible with widely accepted logarith-
mic frequency scales for computations and display of frequency characteristics.
The distinction of the FFT with Fourier integral is also the source of specific
computational errors [6].

To improve the numerical estimation of Fourier integrals, a number of
recent studies focus their attention on alternative numerical methods. A
specific aspect of the problem is that Fourier integrals deal with sets of
strongly oscillatory trigonometric terms and consequently belong to a category
of oscillatory integrals [15]. The standard methods of numerical integration

Numer Algor (2010) 54:73–100 75

usually give inaccurate results for oscillatory components. Classical approach
that provides a maximum precision in the estimation of Fourier integrals is
based on the separation of the function to be transformed from an oscillatory
kernel, i.e. a trigonometric function [12]. The original Filon’s method consists
of dividing the integration interval into equal size panels and interpolating
non-oscillatory function on each panel using a Simpson’s rule (quadratic
interpolation). In each panel the resulting integral is expressed analytically.
This basic approach supports a number of Filon-type methods which use
interpolation polynomials of different degrees [15, 26]. The interpolant is
made up piecewise of segments of Lagrange interpolation polynomials. It has
discontinuous derivatives at the data points, where the pieces join, because
the set of points used in interpolation changes discretely. A high-accuracy
method of numerical Fourier transform in d-dimensions improves accuracy of
approximation using interpolation with polynomial splines and re-establishes
the continuity of original function and its derivatives [5].

An appealing feature of Filon-type methods is their inherent ability to
support a number of different algorithmic implementations [17]. Particularly,
the Filon’s quadrature may be used as a tool to improve the accuracy of
conventional FFT [28, 31]. The algorithms designed in such a way using poly-
nomials of first [30] and second degrees [18] significantly improved accuracy
of the frequency domain measures, as compared with conventional FFT, in a
number of physical applications of Fourier transform spectroscopy. However,
this approach does not eliminate restrictions posed by a Fourier series model
of the data, particularly a strict grid of computational points.

The objective guided the development of the similar basis function (SBF)
algorithm [19] was to a full extent retain the conceptual framework of the
Fourier integral as a tool addressed to continuous functions both in the primary
and transformation domains. Computationally, the idea of the SBF algorithm
is to express the function under the analysis as the sum of finite elements (basis
function) with a similar form of spectral characteristics. This principle reduces
the numerical integration to a number of relatively simple standard time
and frequency domain calculations and provides an opportunity to construct
computationally efficient algorithms.

The SBF algorithm has been successfully applied to a digital spectral
analysis of a number of biomedical signals such as event related potentials [23],
electro-myogram [20], electroencephalogram [24] and electrocardiogram [3].
The estimation of both the amplitude and the phase frequency characteristics
of the signal in these applications provided means to support the interpreta-
tion of the spectral analysis results by a model-based approach named “the
fragmentary decomposition” [7, 21, 22]. Providing a dynamic model of a non-
stationary signal, the fragmentary decomposition heavily relies on the Fourier
methods of dynamic system analysis. In this context, the SBF algorithm is a
means of a digital spectral analysis on the signal segments of arbitrary length.

In this study we present an extended SBF algorithm as a universal tool for
estimation of Fourier integrals in the context of the abovementioned problems
and dynamic system analysis. We also present a new fast SBF algorithm, which

76 Numer Algor (2010) 54:73–100

provides an effective method of computing the time domain counterparts of
frequency domain characteristics.

This paper is organized in the following way. In Section 2 we present the
SBF algorithm. We start with general relationships and introduce the notions
of SBF and similarity relationships. Then, we describe the interpolation pro-
cedure and formulas for computing transforms for the three different types of
given function. In Section 3 we present the fast SBF algorithm. In Section 4
we discuss the computer experiments that compare the numerical solutions
of the algorithm with theoretical data. The paper is finalized with concluding
remarks in Section 5. We also attach an Appendix 1 with major relationships
supporting the applications of Fourier integrals to linear system analysis and
Appendix 2 with the description of theoretical dynamic characteristics of
harmonic oscillator used in the computer experiments.

2 The SBF algorithm

2.1 General relationships

As in most texts, we shall throughout represent the Fourier transform of a
function written in lower-case by the same symbol as the function itself, but
written in upper-case. The major forms of Fourier integrals employed for
computing frequency response characteristics from transient waveforms and
vice versa are given in Appendix 1. The transformations of both time functions
and frequency characteristics bear dual relationships. This allows us to reduce
the major transforms to the form of the following cosine and sine Fourier
integrals,

FC (u) = �C {f(x)} =
∞∫

0

f(x) cos uxdx, (1)

FS (u) = �S {f(x)} =
∞∫

0

f(x) sin uxdx. (2)

Conceptually, f(x) in these integrals is a continuous function that extends
over a semi-infinite interval from 0 to ∞. However, every function we use
to construct a numerical algorithm must be of finite extent. The application
of Fourier transforms to finite-duration functions requires care. The point is
that discontinuities at the boundaries of the finite interval may have distorting
impact on the transforms. In Fourier series analysis the discontinuities are
responsible for the spectral leakage. A number of different windows and
weighting functions have been developed to reduce the spectral leakage
associated with finite observation intervals [14].

In the context of Fourier integral transforms, the discontinuities at the be-
ginning and the end of the integration interval may reflect the physical nature

Numer Algor (2010) 54:73–100 77

of the processes under the investigation. For example, current approaches to
the transient analysis of biological processes define “transient” as a function
that has discontinuities at the beginning and the end of the observation interval
[13].

Filon-type methods have a potential to deal with such kind of signals. The
interpolation with uniform sampling using connected splines, involve the FFT
as a mere tool, but overcome the flaws of the FFT [4, 5]. This solves the
problem of discontinuities without windowing or weighting functions.

In the context of boundary values, the design of numerical procedures needs
to be supported by a clear understanding of the principle used to replace
f(x) in integrals (1) and (2) by its finite approximant. To avoid ambiguity
in dealing with this problem, we use a special symbol, an overhat (ˆ), to
denote in a primary domain a function which has nonzero values over only
a finite interval. In the transformation domain, the same symbol indicates the
Fourier transform of the corresponding finite extent function. It is important
to remember that if a function is finite in the primary domain it must be infinite
in the transformation domain.

Given bounded ŷ(x) which has nonzero values over a finite interval from 0
to L and vanishes outside the interval, the Fourier integrals (1) and (2) from
ŷ(x) have forms of the following finite cosine and sine Fourier integrals:

ŶC (u) = �C
{
ŷ(x)

} =
L∫

0

ŷ(x) cos uxdx, (3)

ŶS (u) = �S
{
ŷ(x)

} =
L∫

0

ŷ(x) sin uxdx. (4)

These integrals are the point of departure for the SBF algorithm. The tran-
scription of ŷ(x) into a digital form specifies ŷ(x) by its sampled values ŷi =
ŷ(xi) in a finite number of nodal points xi(i = 0, 1, . . . , N) with x0 = 0 and
xN = L. The nodes need not be spaced equally.

The calculations are based on the interpolation of ŷ(x) over its samples by a
piece-wise linear polynomial ĥ(x). The basic approach of the SBF algorithm is
to decompose the interpolant into the sum of similar basis functions

ĥ(x) =
N−1∑
i=0

aiθ̂i (x), (5)

where ai are the interpolation coefficients and θ̂i(x) is a similar basis function.
The SBF is defined by the similarity relationship as

θ̂i(x) = r̂ (x/xi+1) ,

78 Numer Algor (2010) 54:73–100

where

r̂(x) =
{

1 − x if 0 ≤ x ≤ 1
0 otherwise

is a basic element in the form of a unit right-angled triangle (Fig. 1a) termed
“triangular basis function” (TBF).

The SBF vanishes everywhere except on the interval [0, xi+1],

θ̂i(x) =
⎧⎨
⎩

1 − x
xi+1

, if 0 ≤ x ≤ xi+1

0 otherwise.
(6)

An important aspect of the interpolation is the necessity to have a similar
behavior of ĥ(x) and ŷ(x) at the ends of the interpolation interval. Given x =
0 and x = L, ĥ(x) is defined at the ends of the interpolation interval by the
following values:

ĥ(0) =
N−1∑
i=0

ai and ĥ (L) = 0.

To avoid a disagreement of ĥ(x) and ŷ(x) at these points, we presume that ŷ(0)

may have an arbitrary value while ŷ(L) = 0.

Fig. 1 a The triangular basis
function. b Shows
construction of the hat
function (triangle abc) as the
sum of the three SBFs
(triangles oqc, ord and opa).
c Exemplifies a piece-wise
linear interpolation of the
segment of the function
shown by the bold solid line.
The interpolant (straight lines
connecting data points from
0 to 4) represents the sum of
the SBF (vertex at the data
point 0) and the hat functions
with vertexes at the data
points from 1 to 4

Numer Algor (2010) 54:73–100 79

In the context of numerical transformations, the advantage of the decom-
position (5) is that Fourier integrals (1) and (2) from TBF are expressed in an
analytical form as

R̂C(u) = �C
{
r̂(x)

} = 1 − cos u
u2

, (7)

R̂S(u) = �S
{
r̂(x)

} = u − sin u
u2

. (8)

These functions are illustrated by Fig. 2.
According to the similarity theorem of the theory of Fourier transforms,

the compression of the abscissa in the primary domain corresponds to the
expansion of the abscissa plus contraction of the ordinate in the transform do-
main. These operations establish the following similarity relationships between
Fourier integrals of SBF and TBF:

�̂Ci(u) = �C

{
θ̂i(x)

}
= xi+1R̂C (xi+1u) , (9)

�̂Si(u) = �S

{
θ̂i(x)

}
= xi+1R̂S (xi+1u) . (10)

These relationships allow us to reduce the entire issue of the transform
calculations to some standard manipulations with relatively simple functions
(7) and (8).

The description of numerical techniques of the SBF algorithm is split in
two parts. The first part (Subsection 2.2) presents the interpolation technique.
The second part (Subsection 2.3) is devoted to the numerical estimation of
Fourier integrals after presentation of ŷ(x) by the formula (5) with defined
interpolation coefficients.

Fig. 2 The curves Re and Im show functions (7) and (8), respectively

80 Numer Algor (2010) 54:73–100

2.2 Interpolation using similar basis functions

Given ŷ(L) = 0, it is assumed that ŷ(x) is represented in the interval [0, L] by its
samples ŷi = ŷ(xi) in the nodal points xi(i = 0, 1, 2, . . . , N) the choice of which
presumes that x0 = 0, xN = L and x0 < x1 < . . . < xi < . . . < xN .

The interpolant, ĥ(x), is created as a piece-wise linear polynomial which
satisfies the interpolation condition:

ĥi = ŷi for i = 0, 1, . . . , N, (11)

where ĥi = ĥ(xi).
In the interval [xi, xi+1] (i = 0, . . . , N − 1) the interpolant is equivalent to a

straight line connecting the values ŷi and ŷi+1,

ĥ(x) = ŷi + (
�ŷi+1/�xi+1

) · x,

where �ŷi+1 = ŷi+1 − ŷi and �xi+1 = xi+1 − xi.
At the end of the interval ĥ(L) = 0, i.e. the very form of the interpolant

provides its coincidence with ŷ(x) at the last interpolation node. Therefore, we
need N interpolation coefficients to support the condition (11) for data points
from i = 0 to N − 1.

A general principle of determining the interpolation coefficients is a sub-
stitution of values of ĥi from (11) into (5) for each data point from i = 0 to
i = N − 1. The coefficients can be determined by solving the resulting system
of N linear equations. A substantial simplification of calculations, as compared
with general procedures, comes from a triangular form of a matrix supporting
the system. Note, that each term in the interpolant (5), i.e. aiθ̂i(x), represents
a rescaled TBF which has been rescaled on the abscissa axis by a scaling
coefficient xi+1 and multiplied on the ordinate axis by a factor ai. According
to (6), θ̂i(x) vanishes everywhere except on the interval [0, xi+1]. Given a
nodal point xj, θ̂i(xj) = 0 if j ≥ i + 1. Therefore, a substitution of x = xj into
(5) removes from the sum all the terms with indexes from i = 0 to i = j − 1.
The value of the interpolant is

ĥj =
N−1∑
i= j

aiθ̂i
(
xj

)
.

A substitution of values x = x j for j from 0 to N − 1 into (5) and replacement
of ĥj by ŷj according to the interpolation condition (11) results in the following
triangular form of the system of N linear equations:

ŷ0 = a0θ̂0(x0) + a1θ̂1(x0) + . . . + aiθ̂i(x0) + . . . + aN−1θ̂N−1(x0),

ŷ1 = a1θ̂1(x1) + . . . + aiθ̂i(x1) + . . . + aN−1θ̂N−1(x1),

· ·
ŷj = ajθ̂j(xj) + . . . + aN−1θ̂N−1(xj),

· ·
ŷN−1 = aN−1θ̂N−1(xN−1),

Numer Algor (2010) 54:73–100 81

To solve these equations using the conventional matrix notation, we col-
lect the signal samples and the interpolation coefficients into N-by-1 vectors
ŷ = �ŷ0, . . . , ŷj, . . . , ŷN−1� and a = [a0, . . . , ai, . . . , aN−1]. In these terms the
whole system of linear equations is ŷ = W · a, where W is a square N-by-N
matrix of upper triangular form.

Let w ji denote the entry of W in the jth row and ith column. The entries of
W below the main diagonal are zero, i.e. wji = 0 for j > i. For j ≤ i,

wji = θ̂i(xj) = 1 − xj/xi+1,

where i and j take values from 0 to N − 1.
The system of linear equations with a triangular matrix is easily solved by

a conventional recursive back substitution procedure. However, we support
the SBF algorithm by much more efficient procedure using the inverse matrix
V = W−1 in terms of which the matrix equation is a = V · ŷ. In the remaining
part of this section we show that the matrix has a form

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α0 β1 γ2 0 0 · · · 0 0 0 0
0 α1 β2 γ3 0 · · · 0 0 0 0
0 0 α2 β3 γ4 · · · 0 0 0 0

· ·
0 0 0 0 0 · · · αN−4 βN−3 γN−2 0
0 0 0 0 0 · · · 0 αN−3 βN−2 γN−1

0 0 0 0 0 · · · 0 0 αN−2 βN−1

0 0 0 0 0 · · · 0 0 0 αN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

αi = xi+1

�xi+1
(0 ≤ i ≤ N − 1) ,

βi = xi
�xi+1 + �xi

�xi+1�xi
(1 ≤ i ≤ N − 1) ,

γi = xi−1

�xi
(2 ≤ i ≤ N − 1) , (12)

Accordingly, the formulas for the estimation of the interpolation coefficients
are:

ai = αiŷi − βi+1 ŷi+1 + γi+2 ŷi+2, 0 ≤ i < N − 3

aN−2 = αN−2 ŷN−2 − βN−1 ŷN−1,

aN−1 = αN−1 ŷN−1. (13)

An essential aspect of these formulas is that interpolation coefficients are
defined by the local properties of the function ŷ(x). Note that each inter-
polation coefficient, ai, ordered by index i from 0 to N−3 is defined by the
three successive samples, ŷi, ŷi+1 and ŷi+2. The last two coefficients, aN−2 and
aN−1, are defined by the two samples (ŷN−2 and ŷN−1) and one sample (ŷN−1),
respectively.

82 Numer Algor (2010) 54:73–100

To make this aspect of the interpolation as intuitive as possible, we deduce
the interpolation coefficients using a geometrical principle. Figure 1b shows
how the sum of three successive SBFs composes a “hat-function”. Widely used
by a finite-element method [25], the hat function is defined as

φ̂i(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − xi−1

xi − xi−1
, if xi−1 ≤ x < xi

xi+1 − x
xi+1 − xi

, if xi ≤ x < xi+1

0, otherwise

on the mesh x0 < x1 < . . . < xi < . . . < xN .
The interpolation capability of the hat function is supported by the two

properties:

1. φ̂i (x) vanishes everywhere except on the two subintervals to which xi

belongs.
2. φ̂i (x) is unity at the node i and zero at all other nodes, i.e.

φ̂i
(
x j

) =
{

1, if i = j,
0, if i �= j.

Using the hat functions, we represent the interpolant (5) in the form

ĥ(x) = ŷ0θ̂0(x) +
N−1∑
i=1

ŷiφ̂i(x). (14)

Figure 1c exemplifies this decomposition. Given ŷ(x) (bold solid line), the
approximating function, ĥ(x), is created by joining the data points 0, 1, 2, 3 and
4 by the straight lines (light traces). In the same fashion the approximation can
be continued for any number of the following nodal points. The interpolation
condition at the first interpolation node x0 is supported by the coincidence of
the vertex of ŷ0θ̂0(x) with the data point 0. The following data points coincide
with vertexes of the hat functions with indexes from 1 to 4.

To find the interpolation coefficients using (14), we need to express the hat
function in terms of TBFs. Referring to Fig. 1b, let oa = xi−1, od = xi, oc =
xi+1 and bd = 1. Therefore, the triangles oqc, ord and opa may be regarded
as the functions αiθ̂i(x), βiθ̂i−1(x) and γiθ̂i−2(x), respectively. αi, βi and γi are
the weighting coefficients which correspond to the segments oq, or and op,
respectively. Since ae = af,

φ̂i(x) = αiθ̂i(x) − βiθ̂i−1(x) + γiθ̂i−2(x). (15)

The weighting coefficients are defined by the following similarity relation-
ships of relevant triangles.

Numer Algor (2010) 54:73–100 83

From the similarity of triangles oqc and dbc, oq/db = xi+1/�xi+1 where
�xi+1 = xi+1 − xi. Since oq = αi and db = 1, αi = xi+1/�xi+1.

From the similarity of triangles afc and dbc, af/db = (xi+1 − xi−1) /�xi+1,

i.e. af = (xi+1 − xi−1) /�xi+1. Since ae = af, the similarity of triangles ord
and aed shows that or = xi (�xi+1 + �x) / (�xi+1�xi). Accordingly, βi =
xi (�xi+1 + �x) / (�xi+1�xi).

From the segments on the ordinate axis it is seen that op = or − oq, i.e.
γi = βi − αi. Substitution of the values of β i and αi gives γi = xi−1/�xi.

For the hat function φ̂1 (x) in (14) the first subinterval [x0, x1] begins from
x0 = 0, i.e. oa = 0. Therefore, γ 1 = 0 and

φ̂1 (x) = α1θ̂1 (x) − β1θ̂0 (x) ,

where β1 = α1.
Substitution of φ̂1 (x) and φ̂i (x) according to (15) into (14) gives

ĥ (x) = ŷ0θ̂0 (x) + ŷ1

[
α1θ̂1 (x) − β1θ̂0 (x)

]

+
N−1∑
i=2

ŷi

[
αiθ̂i (x) − βiθ̂i−1 (x) + γiθ̂i−2 (x)

]
.

The right-hand side of this equation is equal to the right-hand side of the
equation (5). Re-ordering terms, yields

ĥ (x) =
N−3∑
i=0

[(
αiŷi − βi+1ŷi+1 + γi+2ŷi+2

)
θ̂i (x)

]

+ (
αN−2ŷN−2 − βN−1ŷN−1

)
θ̂N−2 (x) + αN−1ŷN−1θ̂N−1 (x) ,

where α0 = 1.
The interpolation coefficients are now readily found to be in the form of

the formulas (13) with weighting coefficients (12). This proves the form of ma-
trix V.

The formulas may be simplified in case of samples which are ordered
according to some rule. In a most common situation the function to be
transformed, ŷ (x), represents the succession of equidistant samples ŷn =
ŷ (n�x) for n = 0,1,. . . ,N taken with the sampling rate �x. In this case, xi =
i�x (i = 0, 1, ..., N), where �x = L/N.

Under these conditions, the weighting coefficients in (13) degenerate into
the following integers:

αi = i + 1 (0 ≤ i ≤ N − 1) ,

βi = 2i (1 ≤ i ≤ N − 1) ,

γi = i − 1 (2 ≤ i ≤ N − 1) .

84 Numer Algor (2010) 54:73–100

The corresponding form of computational formula is

ai = (i + 1)
(
ŷi − 2ŷi+1 + ŷi+2

)
, 0 ≤ i < N − 3

aN−2 = (N − 1)
(
ŷN−2 − 2ŷN−1

)
,

aN−1 = NŷN−1.

A similar situation with exponentially increasing intervals between samples
is described in the Section 3.

2.3 The frequency domain calculations

Given the values of the interpolation coefficients in the interpolant (5), we are
in a position to estimate the Fourier integrals from ĥ (x). Using the similarity
relationships (9) and (10), we may write

ĤC (u) = �C

{
ĥ (x)

}
=

N−1∑
i=0

aixi+1R̂C (xi+1u) , (16)

ĤS (u) = �S

{
ĥ (x)

}
=

N−1∑
i=0

aixi+1R̂S (xi+1u) . (17)

Since ĥ (x) is an interpolant to ŷ (x), these formulas provide estimates of finite
Fourier integrals (3) and (4).

To apply these formulas for carrying out the transformations (1) and (2),
we note that function ŷ (x) extends over a finite interval [0, L] and is zero
outside the interval. Meanwhile, f(x) in the integrals (1) and (2) is a function
of an infinite extend which may have non-zero values at x = L and x>L.
Consequently, we need to establish the relationships between ŷ (x) and f(x)
over the whole infinite range of x from 0 to ∞. In this context, we consider the
following three cases of the calculations of the transforms (1) and (2).

1. The function f(x) ≈0 for x ≥ L. This allows us to assume that f (x) ≈ ŷ (x)

for an infinite range of x from 0 to ∞. Therefore,

FC(u) ≈ ŶC (u) and FS(u) ≈ ŶS (u) .

Once we have an appreciation of ĥ (x) as an acceptable approximation of ŷ (x),
then we use (16) and (17) as the estimates of desired Fourier integrals (1)
and (2):

FC (u) ≈ ĤC (u) and FS (u) ≈ ĤS (u) . (18)

Numer Algor (2010) 54:73–100 85

2. The function f(x) ≈ fL for x ≥ L. Such type of function is characteristic
for step responses of stable dynamic systems (solid curve 1 in Fig. 5b is
an example of such process). In this case we define ŷ (x) in the interval
[0, L] as

ŷ (x) = f (x) − fL. (19)

Given the approximate representation of ŷ (x) in the form of interpolant ĥ (x),
we define f(x) on a semi-infinite interval as f (x) = ĥ (x) + fLσ (x), using a unit
step function

σ (x) =
{

1 if x ≥ 0,

0 otherwise.

A unit step function does not satisfy the conditions which are necessary for
its representation by the Fourier integral. A familiar method to overcome
this restriction is to interpret σ (x) as the limit for α→ 0 of an one-sided
decaying exponential exp(−αx). This gives, �C {σ (x)} = 0 and �S {σ (x)} =
1/u. Therefore,

FC (u) ≈ ĤC (u) and FS (u) ≈ ĤS (u) + fL

u
. (20)

3. The function f(x) = 0 for x > L while f(L) = fL. Consequently, f(x) has
a discontinuity at the end of the interpolation interval. As in the previous
case, we define ŷ (x) in [0, L] interval by the formula (19). Given ĥ (x), the
f(x) is defined on a semi-infinite interval as

f (x) = ĥ (x) + fL [σ (x) − σ (x − L)] = ĥ (x) + fLρ̂ (x) ,

where ρ̂ (x) is a rectangle with a non-zero unit amplitude over the interval [0,
L]. Transformation of this function into the frequency domain gives:

�C
{
ρ̂ (x)

} = P̂C (u) = sin uL
u

,

�S
{
ρ̂ (x)

} = P̂S (u) = 1 − cos uL
u

.

Therefore, the desired Fourier integrals are:

FC (u) ≈ ĤC (u) + fL
sin uL

u
,

FS (u) ≈ ĤS (u) + fL
1 − cos uL

u
. (21)

Major calculations for these three cases consist in an estimation of functions
ĤC (u) and ĤS (u), i.e. the weighted sums of sampled values of functions (7)
and (8).

86 Numer Algor (2010) 54:73–100

The amount of computations may be significantly reduced by specific or-
dering of sampling intervals in both primary and transformation domains. An
effective algorithm constructed in such a way is presented in the next section.

3 Fast SBF algorithm

One major difference of the above algorithms compared to the Fourier series is
that the conventional algorithms of numerical harmonic analysis, particularly
the FFT, presume uniformly spaced grids of computational points. By contrast,
the SBF algorithm accepts non-evenly sampled functions in both primary and
transformation domains.

The advantages of non-uniform sampling in the analysis of dynamic systems
are associated with the possibility of parsimonious digital representation of
dynamic characteristics. In this context, it is widely accepted to use the
logarithmic frequency representation of the transfer functions, i.e. to transcript
the frequency characteristics into a digital form using exponentially increasing
sampling intervals. The employment of the logarithmic scales is an essential
aspect of a number of fundamental frequency domain design methods, for
example, the Bode diagrams. The problem of computing the Fourier trans-
forms from exponentially increasing points attracted much attention in the
engineering applications [1]. To our knowledge, the SBF algorithm for the first
time provides a computationally efficient solution.

We define the sequence of nodal points for interpolation as:

x0 = 0, xi = x1Ci−1 (i = 1, ..., N)

where C is a real constant which must satisfy the condition C > 1.
For i > 0 the points xi constitute a geometric progression naturally con-

nected with the employment of the logarithmic scales. Indeed, for i from 1
to N we may consider ŷ (xi) as a sequence of evenly spaced samples in x
logarithmic scale. Accordingly, the data points

{
xi, ŷi

}
for i = 1,. . . ,N represent

the information with which the algorithm deals. The parameter C establishes
the sampling rate which is convenient to define by the number of samples per
decade, ν. Given desired ν, C = ν

√
10.

The first interpolation node x0 does not belong to the exponentially dis-
tributed sequence of the samples of given function. However, this point is
important because it corresponds to the beginning of the interval on which
the interpolant (5) is defined. The fast SBF algorithm takes ŷ0 = ŷ1. This
implicitly presumes that ŷ1 is close to the actual value of ŷ (x) at x = 0. In
most applications ŷ (0) is zero or finite at x = 0. The situation with function
which goes to infinity as x approaches zero is exemplified in the next section.

The first sampling interval between nodal points x0 and x1 is �x1 = x1. The
sampling intervals between the following nodal points are:

�xi = xi − xi−1 = x1Ci−2 (C − 1) (i = 2, ..., N − 1)

Numer Algor (2010) 54:73–100 87

The substitution of values of the nodal points and the segmentation intervals
into (12) gives

α0 = 1,

αi = C
C − 1

(1 ≤ i ≤ N − 1) ,

β1 = C
C − 1

,

βi = C + 1

C − 1
(2 ≤ i ≤ N − 1) ,

γi = 1

C − 1
(2 ≤ i ≤ N − 1) .

We see that with the exception of α0 and β1, the interpolation coefficients are
no more dependent on the ordering index i and may be regarded as constants.
Using the notations

αC = C
C − 1

, βC = C + 1

C − 1
, and γC = 1

C − 1
,

we present the computational formulas in the form

a0 = ŷ0 − β1ŷ1 + γCŷ2,

ai = αCŷi − βCŷi+1 + γCŷi+2 1 ≤ i < N − 3,

aN−2 = αCŷN−2 − βCŷN−1,

aN−1 = αCŷN−1.

The corresponding matrix is

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 β1 γC 0 0 · · · 0 0 0 0
0 αC βC γC 0 · · · 0 0 0 0
0 0 αC βC γC · · · 0 0 0 0

· ·
0 0 0 0 0 · · · αC βC γC 0
0 0 0 0 0 · · · 0 αC βC γC

0 0 0 0 0 · · · 0 0 αC βC

0 0 0 0 0 · · · 0 0 0 αC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The computational formulas are:

ĤC (u) = x1

N−1∑
i=0

aiCiR̂C
(
x1Ciu

)
, (22)

ĤS (u) = x1

N−1∑
i=0

aiCiR̂S
(
x1Ciu

)
. (23)

88 Numer Algor (2010) 54:73–100

A major computational work consists in the estimation of functions R̂C (u)

and R̂S (u) for different values of u. To compute ĤC (u) (or ĤS (u)) at a single
point, it is necessary to compute R̂C (u) (or R̂S (u)) at N points. Consequently,
to estimate ĤC (u) (or ĤS (u)) at M points, we need to compute values of R̂C (u)

(or R̂S (u)) at MN points.
The idea behind the fast algorithm is to reduce the amount of these

calculations via a choice of exponentially spaced values um = u1Cm (u1 > 0,
m = 1,. . . ,M) with the same sampling rate as the initial succession of xi points.
The insertion of these values into (22) and (23) results in

ĤC (um) = x1

N−1∑
i=0

aiCiR̂C
(
zCm+i) , (24)

ĤS (um) = x1

N−1∑
i=0

aiCiR̂S
(
zCm+i) , (25)

where z = x1u1.
These formulas use the values of functions R̂C (u) and R̂S (u) in the points

zC j where an integer j takes values from 0 to N + M + 1. Compared with
the general case, the number of values of R̂C (u) (or R̂S (u)) involved in the
calculations is reduced from NM to N + M + 1. Typically, a reduction in
calculations may be quite significant. For example, given typical numbers N
= 500 and M = 500 from the following examples, the reduction is 250 fold.

4 Computer experiments

The goal of the computer experiments is to ensure that the algorithms worked
properly and the numerical solutions were consistent with the theory. We
compared the numerical solutions with precisely known Fourier integrals in
order to test the algorithms and evaluate their accuracy. The experiments have
been supported by a specially designed computer program written in Borland
Delphi. The demonstration version of the program is available from the author
by request.

The theoretical solutions to which we refer in the computer experiments
represent the dynamic characteristics calculated from the theoretical equations
of a harmonic oscillator (see Appendix 2). The numerical solutions represent
the estimates of relevant Fourier transforms (see Appendix 1) calculated
by the SBF algorithm. Given the data points, the interpolation coefficients
have been calculated by the (13) and followed by the frequency domain
transformations of defined SBFs using (18), (20) or (21). In the case of the
fast SBF the (24) and (25) were employed.

The first series of experiments was focused on the forward Fourier transform
(FT), i.e. the conversion of the transient responses from the time domain to the
frequency domain. Using the impulse response of the system with parameters

Numer Algor (2010) 54:73–100 89

v0 = 10 Hz are ζ = 0.2 (a dimensionless unit) as the theoretical solution (bold
solid curve in Fig. 3a), we examined computational schemes supported by non-
uniform and uniform samples of the waveform.

The non-uniform nodal points have been estimated by a data compression
algorithm [29] which performs an adaptive segmentation in such a way that
the modulus of the error function (the residual between the theoretical and
numerical solutions) does not exceed the value of the threshold, P.

The time series to which the compression algorithm has been applied
represented 561 samples of the impulse response (36) on the interval from
0 to 0.56 s (sampling interval 0.001 s). To illustrate the character of the
computational errors, we refer to the following six decreasing values of the
threshold, P1 = 4, P2 = 2, P3 = 1, P4 = 0.5, P5 = 0.25 and P6 = 0.125.
The corresponding numbers of the interpolation nodes (non-redundant points)
are: 12, 16, 23, 31, 46 and 65.

The numerical estimation of the forward FTs has shown a similar character
of the error distributions for both G(ω) and B(ω) (equations (34) and (35),
respectively). For illustration purposes, we use B(ω) which is shown by the
bold line in Fig. 3b.

Fig. 3 The transform of the impulse response (36) to the frequency domain. a Theoretical impulse
response and piece-wise linear interpolant are shown by the bold and light curves, respectively.
b The imaginary part (35) of the frequency transfer function. The bold and light curves show the
theoretical and numerical solutions, respectively. c The ensemble of the absolute values of error
functions for different values P1,. . . , P6 of the threshold. The absolute value of the difference
between the curves displayed in a corresponds to the error function for threshold value P1. d The
ensemble of the absolute values of error functions in the frequency domain for different values of
the threshold. The error function for the threshold P1 corresponds to the modulus of the difference
between the curves displayed in b

90 Numer Algor (2010) 54:73–100

In the scales of the plots in Fig. 3a and b, the numerical solutions are
indistinguishable from the theoretical ones for threshold values below 1. To
give a visual impression of the differences in the curves, we show the numerical
solutions in Fig. 3a and b (light traces) for a large threshold value P1.

The threshold was varied from P1 to P6 and a consistent decrease of error
functions both in the time and frequency domains is illustrated by Fig. 3c and
d. The Fig. 3c shows for each value of the threshold, the absolute value of the
time domain error function on the interval from 0 to 0.5 s. In a similar manner,
the Fig. 3d shows the absolute value of the frequency domain error function in
the interval from 0.1 to 100 Hz for each value of the threshold.

Given a particular value of the threshold, a qualitative difference between
the error functions in the time and frequency domains is that the time domain
errors are characterized by a nearly uniform distribution of the amplitude
values across the time interval while the maximum errors in the frequency
domain are linked to the maximum values of the frequency characteristic. The
time domain aspect of this difference is relevant to the method of adaptive
segmentation which keeps the error function in the intervals between the
subsequent nodes under the threshold level. With respect to the frequency
domain, a larger absolute error for larger value of estimated functions indi-
cates that relative rather than absolute errors have a tendency of a uniform
distribution over the frequency scale. This is a desirable property of a robust
numerical algorithm. In this context it is important to note that errors of
spectral estimates provided by the FFT have a strong tendency to increase
with increase of the frequency [6]. By contrast, the Filon’s quadrature is free
of this highly undesirable trend and may even improve with accuracy as the
frequency increases [15].

The ability of the algorithm to provide the required accuracy of the nu-
merical estimates using an appropriate choice of computational parameters
is illustrated by Fig. 4a which displays the dependencies of the maximum
absolute error in the frequency domain on the value of the threshold for
both G(ω) and B(ω). It is clear that the improvement in the accuracy of
the interpolation in the time domain is reflected in the frequency domain by
convergence of the numerical solutions to theoretical solutions.

The computation of the forward FT using equal sampling intervals may be
regarded as a limiting case of non-uniform sampling with the threshold for
data compression so small that the initial time series representing the given
time function remains unchanged. Given the equally spaced samples of the
transient waveform, the computer experiments have shown that a decrease
in the sampling interval improves the accuracy of the numerical solutions.
Figure 4b shows the dependencies of the maximum of the frequency domain
error function on the value of the sampling interval for both the real and
imaginary parts of the frequency characteristic.

A similar range of values of maximum errors in Fig. 4a and b allows us to
compare the effectiveness of the procedures of adaptive and uniform sampling.
It appears that the adaptive sampling provides an approximately two-fold
reduction in the number of nodal points for interpolation. Considerably higher

Numer Algor (2010) 54:73–100 91

Fig. 4 The errors of numerical estimation of the real (Re) and imaginary (Im) parts of the
frequency transfer function [(34) and (35), respectively] from the impulse response (36) are plotted
as functions of computational parameters. a and b display cases of an adaptive and uniform
segmentation, respectively

levels of redundancy reduction are achieved if the transient waveform is
composed from several components with different time constants.

In the second series of computer experiments, we examined the restoration
of transient responses from real and/or imaginary parts of the frequency
transfer function. The computations of the inverse FTs have been performed
using the fast SBF algorithm. We take values of given frequency characteristic
at the points fi = f1Ci (i = 1,. . . , N). Therefore, we deal with N uniformly
spaced samples of frequency characteristic on a logarithmic scale of frequency.
According to the construction of the interpolation procedure, the fast al-
gorithm universally adds a point f0 = 0 and prescribes the value F(f0) =
F(f1) to the corresponding sample (F stands for a symbol of given frequency
characteristic).

With respect to the accuracy of computations, the general outcomes of the
application of the fast SBF algorithm to the estimation of (30–33) are similar
to the previous results in a sense that an improvement of the interpolation
accuracy in the primary domain improves the accuracy of the numerical
solutions in the transformation domain. However, the implementation of (33)
to the step response with a non-zero resting value requires some additional
comments.

The problem is illustrated by an example shown in Fig. 5. In terms of (32)
and (33), the curves 1 and 2 in Fig. 5a correspond to functions −B(ω)/ω and
G(ω)/ω. The time domain counterpart of these functions is the step response
(37), shown by the curve 1 in Fig. 5b.

The frequency interval from 1 to 100 Hz is sufficient to account for the
major characteristic features of −B(ω)/ω. This conclusion is supported by a
high accuracy with which a step response vσ (t) has been restored from 101
sample of −B(ω)/ω on the interval from 1 to 100 Hz (50 samples per decade).
The numerical solution which closely coincides with the theoretical solution is
shown by curve 2.

92 Numer Algor (2010) 54:73–100

Fig. 5 a The curves 1 and 2 show theoretical functions −B(ω)/ω and G(ω)/ω. b The curve 1 is
the step response of the system calculated from (37). The curves 2–4 show numerical solutions
computed under different sets of computational parameters

The problem with (33) is that G(ω)/ω goes to infinity as ω approaches zero.
However, the initial value of this function in numerical calculations is finite and
corresponds to G(ω0) = G(ω1). This means that we prescribe to G(ω) a con-
stant value G(ω1) on the interval from 0 to ω1 = 2π f1. The opportunity to get
rid of the errors produced by such a discrepancy from the numerical solutions
stems from the fact that the asymptotic behavior of frequency characteristics
at f →0 defines the asymptotic behavior of the corresponding time function
at t → ∞. Since we search the time domain solution on a finite time interval
[0, T], we can chose f1 small enough to remove the error from the interval of
interest. To test the sensitivity of the solution to the choice of the frequency f1,
we calculated step responses from G(ω)/ω given on the intervals of different
length. The curve 3 in Fig. 5b depicts the numerical solutions computed from
101 sample of G(ω)/ω on the interval from 1 to 100 Hz, i.e. the same parameters
as those used for treatment of B(ω)/ω. The curve progressively deviates from
the theoretical solution as the time increases. Such character of disagreement
clearly indicates the range of low frequencies as the source of discrepancy.
The calculations were repeated for an extended interpolation interval from
0.1 to 100 Hz (151 sample). The result is depicted by curve 4 and shows
a considerable improvement in the accuracy of the numerical solution. An
excellent match (a practical coincidence of numerical and theoretical solutions
in the time scale of Fig. 5) has been achieved by a further extension of the
interpolation interval to the range from 0.01 to 100 Hz (201 sample). The
encouraging result of these experiments is the capability of the SBF algorithm
to provide reasonably accurate numerical solutions when treating a function
with singularity. However, this solution’s sensitivity to the frequency from
which the exponentially distributed samples start, may necessitate a number of
trials with different computational parameters. Fortunately, there is a simple
way to avoid these complications using (32) instead of (33).

In dealing with theoretical and numerical solutions we are involved in a
simultaneous consideration of both the time and frequency domains and in
the interpretation of error in these two domains. These numerical experiments

Numer Algor (2010) 54:73–100 93

show that we can make the error as small as we wish by an appropriate
selection of computational parameters. This provides a basis for a universal
way to test the algorithms using the forward FT followed by the inverse FT.

The corresponding numerical procedures include the two major steps illus-
trated by Fig. 6. The first step is the transition from the time to frequency
domain using the forward FT. The second step is the restoration of the
transient response from numerical frequency characteristics using the inverse
FT. We use as an example a complex oscillatory process w (t) = vδ1 (t) + vδ2 (t),
which represents the sum of the impulse responses of two harmonic oscillators

Fig. 6 Application of the forward FT followed by inverse FT to the composite impulse response
w(t) shown in a. The graphs of GW(ω) and BW(ω) are shown in b and c, respectively. d and e show
w(t) before (solid lines) and after (dotted lines) numerical restoration

94 Numer Algor (2010) 54:73–100

with the following parameters: (1) v0 = 7 Hz, ζ = 0.1, (2) v0 = 10 Hz, ζ = 0.15.
The real and imaginary parts of the complex spectrum of w(t) are GW (ω) =
GW1 (ω) + GW2 (ω)and BW (ω) = BW1 (ω) + BW2 (ω), where “1” and “2” in the
subscripts denote the first and second oscillators, respectively. The graphs of
w(t), GW(ω)and BW(ω)calculated from (34), (35) and (36) are shown in Fig. 6
by the solid lines.

Forward FTs have been computed by general procedures of the SBF
algorithm from uniformly sampled values of w(t) taken with the sampling
rate �t in the interval from 0 to 0.8 s. Inverse FTs have been computed by
the fast SBF algorithm from exponentially distributed samples of GW(ω) and
BW(ω) in the interval from 1 to 100 Hz. Referring to the previous series of
computer experiments, we established the frequency domain sampling rate (50
samples per decade) which provides sufficiently accurate estimates of inverse
FTs. This allowed us to analyse the accuracy of the whole cycle of calculations
using �t as a parameter. The dotted lines in Fig. 6 show numerical solutions
obtained at �t = 0.03 s (28 samples). The character of the errors and their
improvement with more concentrated sampling of w(t) are illustrated by the
graphs of error functions in Fig. 7. Graphs in a and b compare the frequency
domain errors for three choices of �t: 0.03, 0.02 and 0.01 (s) (28, 41 and 81
samples, respectively). Increasing number of samples causes the actual error
to decrease. A similar effect characterizes the errors of w(t) restoration. An
important aspect of improved computational accuracy is not just the reduction
of the errors but also their tendency of a more uniform distribution over the
interpolation interval. This is clearly seen in Fig. 7c and d where reduction of
�t from 0.02 to 0.005 (curves 1 and 2, respectively) provides a nearly tenfold
decrease of the maximum values of the absolute errors. An interesting point
to note is the closeness of numerical estimates of w(t) separately restored from
GW(ω)and BW(ω). The similarity of the error functions depicted in C and D
may be attributed to the fact that one of the functions GW(ω) and BW(ω) can
be expressed in terms of the other. The relationships are established by the
Hilbert transforms [27].

Complex oscillatory processes with closely spaced resonant peaks are dif-
ficult objects for digital spectral analysis using conventional discrete Fourier
transform (DFT) [16]. A relatively simple and accurate solution of such a
task in our example is partly explained by the effectiveness of the logarithmic
frequency scales. However, the major factor is that the SBF algorithm is
supported by a piece-wise linear interpolation which provides remarkably
better approximation of complex waveforms than interpolation procedures
underlying the DFT [33].

Applicability of described procedures of combined forward and inverse FTs
to short segments of transient waveforms provides effective tools for the time-
frequency analysis of non-stationary processes. Such an approach revealed
different frequency domain patterns of characteristic waveforms of human
electrocardiogram (ECG) [3]. A crucial finding is that initiation of the R wave
of the ECG during a normal heart contraction is described by an equation
of underdamped harmonic oscillator the parameters of which typically belong

Numer Algor (2010) 54:73–100 95

Fig. 7 The error functions (the differences between theoretical and numerical solutions) com-
puted for different values of the time domain sampling interval �t. The frequency domain error
functions are shown in a for GW/(ω) and in b for BW(ω). The curves 1, 2 and 3 correspond to the
sampling intervals 0.03, 0.02 and 0.01 (s), respectively. c and d show the error functions for w(t)
restored from GW/(ω)and BW/(ω), respectively. The curves 1 and 2 correspond to the sampling
intervals 0.02 and 0.005 (s), respectively

to the following ranges: natural frequency from 12 to 17 Hz, damping ratio of
heart contractions ζ from 0.35 to 0.5. The dynamics of heart contractions varies
from beat to beat. Having transformed the ECG segment to the frequency
domain, the inverse Fourier transform (fast SBF algorithm) affords the means
to handle these tiny aspects of the heart performance in the time domain where
the ECG data are initially specified.

5 Concluding remarks

The SBF algorithm and its fast version are developed for estimation of sine and
cosine Fourier integrals using the function decomposition into a sum of similar
basis functions. We can conclude with confidence from our computer experi-
ments that the SBF algorithms are stable in the sense that the increase of the
interpolation accuracy makes the numerical solution to converge towards the
theoretical one. A beneficial aspect of high (in fact arbitrary) order accuracy of
the algorithm is that the error distributions in the transformation domain did
not show some unexpected, “pathological” features. Meanwhile, the spectral
leakage induced by the discontinuities at the boundaries of the function under

96 Numer Algor (2010) 54:73–100

analysis is a major challenge in the applications of conventional FFT to the
estimation of Fourier integrals and in the short-time spectral analysis. The
usual remedies of error reduction by windowing and zero-padding introduce
problems of their own.

The SBF algorithm permits an explicit treatment of discontinuities at the
boundary points. The solution is sought in the very form of the interpolation
function in which the first term represents a discontinuous component of the
solution while the rest of the basis functions approximate smooth waveforms.

The broadest conclusions to be drawn from the comparison of the SBF
algorithm with conventional FFT are as follows.

1. Conceptually, the SBF algorithm deals with a continuous Fourier spectrum
instead of a discrete spectrum defined by the discrete Fourier transform
and implemented by the FFT algorithm.

2. The transcription of the continuous functions into a digital form accepts
non-uniform sampling intervals in both primary and transformation do-
mains. The fast SBF algorithm draws on novel principles of the design of
effective algorithms supported by these opportunities.

3. The need for windows for spectral analysis is eliminated, along with their
distorting impact.

4. The algorithm may be applied to signal segments of arbitrary lengths.

Appendix 1: Linear system analysis using Fourier Integrals

This section gives a survey of basic relationships which support the frequency
domain analysis of a linear stationary system (LSS) [2, 8, 27]. Given an input
force applied to the system, let the response be a continuous time function v(t)
which satisfies the conditions of its representation by Fourier integral. Then it
may be presented as

v (t) = 1

2π

∞∫

−∞
V (ω) exp (iωt) dω, (26)

where

V (ω) =
∞∫

−∞
v (t) exp (−iωt)dt (27)

is a spectral density function, i = √−1 and ω is the angular frequency con-
nected with the frequency f as ω = 2π f.

This classical pair of Fourier transforms bears a dual relationship. Essential
aspects are the infinite limits of integration and complex form of both the
frequency and time domain functions. Actually, v(t) is regarded as a real
time function while V(ω) is a complex spectrum. In terms of real functions
V (ω) = VC (ω) − iVS (ω). If LSS is physically realizable, the response of the

Numer Algor (2010) 54:73–100 97

system on the application of the input function at t = 0 appears at t ≥ 0.
Accordingly, the frequency domain representation of v(t) in terms of real
functions is

VC (ω) =
∞∫

0

v (t) cos (ωt)dt, VS (ω) =
∞∫

0

v (t) sin (ωt)dt. (28)

The inversion formulas provide means to restore v(t) from only the real VC(ω)
or imaginary VS(ω) parts of the complex spectrum. A common approach [27]
to obtain these special forms of Fourier integrals uses decomposition of v(t)
into its even and odd parts by writing v (t) = e (t) + o (t), where e(−t) = e(t),
o(−t) = −o(t). Referring to the symmetry properties of cosine and sine Fourier
transforms [8], we readily obtain from (27) that

VC (ω) =
∞∫

−∞
e (t) cos (ωt)dt, VS (ω) =

∞∫

−∞
o (t) sin (ωt)dt,

where VC(ω) and VS(ω) are respectively even and odd functions of ω. Substi-
tution of these functions into (26) and separation into two integrals yields the
following inverse transforms

e (t) = 1

2π

∞∫

−∞
VC (ω) cos (ωt)dω, o (t) = 1

2π

∞∫

−∞
VS (ω) sin (ωt)dω.

Here the limits of integration may be extended only over positive values of ω

and the result multiplied by 2, since the integrands are even functions. Given
that v(t) is zero for t < 0, it is clear that e(t) and o(t) cancel for t < 0, and hence
must be equal for t > 0. Therefore, v(t) for t > 0 is given either twice e(t) or
twice o(t), and we obtain

v (t) = 2

π

∞∫

0

VC (ω) cos (ωt)dω = 2

π

∞∫

0

VS (ω) sin (ωt)dω. (29)

We see that the real or imaginary part of the complex spectrum is sufficient to
estimate the time response.

98 Numer Algor (2010) 54:73–100

Formulas (29) are directly applicable to the estimation of an impulse
response, vδ(t), of a stable physically realizable LSS, i.e. the transient induced
in the system by the application of a unit impulse (Dirac delta function). Let
H (ω) = G (ω) − iB (ω) be a complex frequency transfer function of the system.
Given that the complex spectrum of a unit impulse is 1, the real and imaginary
parts of the complex spectrum of vδ(t) are B(ω) and G(ω). Therefore,

vδ (t) = 2

π

∞∫

0

G (ω) cos (ωt) dω, (30)

vδ (t) = 2

π

∞∫

0

B (ω) sin (ωt) dω. (31)

Another standard dynamic characteristic of LSS is a step response, vσ (t), i.e.
the transient induced by a forcing unit step function the complex spectrum of
which is 1/iω. The special forms of Fourier integrals for this case are

vσ (t) = G (0) − 2

π

∞∫

0

B (ω)

ω
cos (ωt) dω. (32)

vσ (t) = 2

π

∞∫

0

G (ω)

ω
sin (ωt) dω, (33)

Appendix 2: The dynamic characteristics of harmonic oscillator

A harmonic oscillator with dynamic characteristics used in our computer
experiments is described by a second order differential equation:

d2v

dt2 + 2ζ�0
dv
dt

+ �2
0v = 0,

where �0 = 2πv0, ν0 is the natural frequency and ζ is the damping ratio.
The general form of the system’s transfer function is

H (s) = �2
0

s2 + 2ζ�0s + �2
0

,

where s is a complex variable. After substitution of s = iω, the real, G(ω), and
imaginary, B(ω), parts of the frequency transfer function H(iω) are defined as:

G (ω) =
1 −

(
ω
�0

)2

(
1 −

(
ω
�0

)2
)2

+
(

2ζω

�0

)2
, (34)

Numer Algor (2010) 54:73–100 99

B (ω) =
2ζ

(
ω
�0

)
(

1 −
(

ω
�0

)2
)2

+
(

2ζω

�0

)2
. (35)

The impulse and step responses of the system at t ≥ 0 are:

vδ (t) = �0√
1 − ζ 2

e−ζ�0t sin
(√

1 − ζ 2�0t
)

, (36)

vσ (t) = 1 − e−ζ�0t

(
cos �0t + ζ√

1 − ζ 2
sin �0t

)
. (37)

References

1. Ametani, A., Imanishi, K.: Development of exponential Fourier transform and its application
to electrical transients. Proc. IEEE 126, 51–56 (1979)

2. Aseltine, J.A.: Transform Method in Linear System Analysis. McGraw-Hill, New York (1958)
3. Bahramali, H., Melkonian, D., O’Connell, O.: Self regulation of the heart: natural frequency

and damping of the heart contractions. Open Cybern. Syst. J. 2, 1–10 (2008)
4. Beaudoin, N.: A high-accuracy mathematical and numerical method for Fourier transform,

integral, derivative, and polynomial splines of any order. Can. J. Phys. 76, 659–677 (1998)
5. Beaudoin, N., Beauchemin, S.S.: A new numerical Fourier transform in d-dimensions. IEEE

Trans. Signal Process. 51, 1422–1430 (2003)
6. Becker, R.I., Morrison, N.: The errors in FFT estimation of the Fourier transform. IEEE

Trans. Signal Process. 44, 2073–2077 (1996)
7. Blumenthal, T., Melkonian, D.: A model based approach to quantitative analysis of eyeblink

EMG responses. J. Psychophysiol. 17, 1–11 (2003)
8. Bracewell, R.N.: The Fourier Transform and its Applications. McGraw-Hill, New York (1986)
9. Chua, L., Ng, C.: Frequency domain analysis of nonlinear systems: general theory, formulation

of transfer functions. IEEE J. Electron. Circuits Syst. 3, 165–185 (1979)
10. Cohen, L.: Time–frequency distributions—a review. Proc. IEEE 77, 941–981 (1989)
11. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier

Series. Math. Comput. 19, 7–301 (1965)
12. Filon, L.N.G.: On a quadrature formula for trigonometric integrals. Proc. R. Soc. Edin. 49,

38–47 (1929)
13. Harris, C.M.: The Fourier analysis of biological transients. J. Neurosci. Methods 83, 15–34

(1998)
14. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform.

Proc. IEEE 66, 51–83 (1978)
15. Iserles, A.: On the numerical quadrature of highly-oscillating integrals I: Fourier transforms.

IMA J. Numer. Anal. 24, 365–391 (2004)
16. Kay, S.M., Marple, S.L.: Spectrum analysis—a modern perspective. Proc. IEEE 69, 1380–1419

(1981)
17. Lyness, J.N.: The calculation of trigonometric Fourier coefficients. J. Comput. Phys. 54, 57–73

(1984)
18. Mäkinen, S.: New algorithm for the calculation of the Fourier transform of discrete signals.

Rev. Sci. Instrum. 53, 6–630 (1982)
19. Melkonian, D.: Transients in Neuronal Systems. Armenian Academy of Sciences, Yerevan

(1987, in Russian)
20. Melkonian, D., Blumenthal, T., Gordon, E.: Numerical Fourier transform spectroscopy of

EMG half-waves: fragmentary-decomposition-based approach to nonstationary signal analy-
sis. Biol. Cybern. 81, 457–467 (1999)

100 Numer Algor (2010) 54:73–100

21. Melkonian, D., Blumenthal, T., Meares, R.: High resolution fragmentary decomposition—
a model based method of non-stationary electrophysiological signal analysis. J. Neurosci.
Methods 131, 149–159 (2003)

22. Melkonian, D., Gordon, E., Bahramali, H.: Single-event-related potential analysis by means
of fragmentary decomposition. Biol. Cybern. 85, 219–2 (2001)

23. Melkonian, D., Gordon, E., Rennie, C., Bahramali, H.: Dynamic spectral analysis of event-
related potentials. Electroencephalogr. Clin. Neurophysiol. 108, 251–259 (1998)

24. Melkonian, D., Meares, R., Bahramali, H., Harris, A., Williams, L.: Numerical Fourier trans-
form spectroscopy of EEG waveforms using similar basis function algorithm. Trends Appl.
Spectrosc. 6, 69–77 (2007)

25. Noble, B.: Variational finite element methods for initial value problems. In: Whiteman, J.R.
(ed.) The Mathematics of Finite Elements and Applications, pp. 143–151. Academic, London
(1973)

26. Olver, S.: Numerical approximation of highly oscillatory integrals. PhD thesis, University of
Cambridge, Trinity Hall (2007)

27. Papoulis, A.: The Fourier Integral and its Applications. McGraw-Hill, New York (1962)
28. Press, W.H., Plannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The

Art of Scientific Computing. Cambridge University Press, Cambridge (1993)
29. Ruttiman, U.E., Pipberger, H.V.: Compression of the ECG by prediction or interpolation and

entropy encoding. IEEE Trans. Biomed. Eng. 26, 613–623 (1979)
30. Schütte, J.: New fast Fourier transform algorithm for linear system analysis applied in molec-

ular beam relaxation spectroscopy. Rev. Sci. Instrum. 52, 400–404 (1981)
31. Sorella, S., Ghosh, S.K.: Improved method for the discrete fast Fourier transform. Rev. Sci.

Instrum. 55, 1348–1352 (1984)
32. Zadeh, L.A.: Frequency analysis of variable networks. Proc. IRE 38, 1–9 (1950)
33. Zeng, P.: High-accuracy formula for discrete calculation of fourier transforms. Appl. Math.

Comput. 106, 117–140 (1999)

	Similar basis function algorithm for numerical estimation of Fourier integrals
	Abstract
	Introduction
	The SBF algorithm
	General relationships
	Interpolation using similar basis functions
	The frequency domain calculations

	Fast SBF algorithm
	Computer experiments
	Concluding remarks
	Appendix 1: Linear system analysis using Fourier Integrals
	Appendix 2: The dynamic characteristics of harmonic oscillator
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

