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“My child has a type of seizures that are not really 
convulsive… I am really concerned with SUDEP every single 
night. So the way I see these alerting devices fitting in our 
lives is providing me with some piece of mind so that we can 
sleep and know that we will be alerted to a seizure when they 
happen…” 
 
Dr. Catherine Jacobson 

 
ABSTRACT  
Timely detection of seizure occurrence in epileptic patients and alerting caregivers for prompt 
intervention would drastically improve the quality of life of epileptic patients and reduce 
mortality. Despite remarkable developments in this field, there are no, to our knowledge, 
algorithms that could reliably and promptly detect the seizure occurrences by real-time EEG 
analysis.  

We propose a novel method for real-time electrographic seizure detection. The key part of the 
method is decomposition of the EEG signal into elementary components (Fragmentary 
decomposition, FD), using original technique of short-term Fourier transform. FD creates 
accurate explicit model of the signal and provides opportunity for computer reconstructions 
of different sets of defined signal components. This approach provides a more elaborate way 
for waveform analysis which identifies specific shape of each peak in the time course of non-
stationary signal. The components of the model signal are then processed by an original 
temporal pattern recognition algorithm, which may be tuned for recognition of any specific 
combination of model components.  
The method was successfully tested on EEG recordings from WAG/Rij rats (animal model of 
absence epilepsy), and human intracranial and scalp EEG. In most cases the seizures were 
detected well before they gain the full strength - mostly before the spike phase initiates, and 
always before the spikes’ amplitudes reach large values. In some patients unique precursor 
events preceded seizure onset for several seconds. In these cases the detection of the 
precursor events in fact turns into accurate seizure prediction. 
The proposed method may be used for real-time fast and reliable detection of electrographic 
seizures in the EEG. Its ability to detect short epileptogenic events and other specific patterns 
(which may be small in amplitude) makes the method useful in research directed to seizure 
prediction and in seizure detection device applications.  
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INTRODUCTION 
Timely detection of occurrence of seizures in epileptic patients and alarming caregivers for 
prompt intervention is extremely important in epilepsy care. It would drastically improve the 
quality of life of epileptic patients and reduce mortality.  

Attempts to design methods for reliable seizure detection based on analysis of EEG have 
started several decades ago. One of the earliest seizure event detectors (SED) was developed 
by Jean Gotman in 1982 [1]. Since then various methods have been developed in order to 
increase the power of SED in recognition of complex forms of epileptogenic EEGs [2]. The 
major difficulty all these methods are facing is the inherent high non-stationarity of the EEG 
signal: the analysis of such signals is not supported by general theoretical and computational 
frameworks. Accordingly, the non-stationary character of EEG data is usually ignored.  
This kind of oversimplification naturally necessitates the averaging: the higher the 
irregularities of the EEG signal, the longer the EEG segment required for obtaining consistent 
spectral and statistical estimates. Existing methods in general require quite long EEG 
fragments, or epochs, to be processed - sometimes tens of seconds. This makes these methods 
hardly acceptable when the detection of seizure must be as quick as possible, like in seizure 
alarm systems. 
We designed a digital signal processing method, Fragmentary decomposition (FD), supported 
by a novel chaos-based modelling (CBM) approach [3], which is capable to construct a 
precise model of EEG and perform model based analysis in order to find and classify 
epileptogenic elements of the EEG. 
The methodology of CBM regards the EEG as a global scale non-stationary process which 
originates from multiple cellular sources acting at the microscopic scale. Due to the 
interference of deterministic and random factors the source activity from the microscopic 
scale is converted at the global scale to statistical measures which reflect probabilistic 
regularities rather than a physical nature of the elementary sources.  Thus, a global scale 
physiological component develops as a cumulative statistical aggregate of multiple 
elementary sources. The interplay of deterministic and stochastic factors exhibits 
characteristic features of deterministic chaos.  
A crucial aspect of the CBM is the introduction of original time dependent distribution 
termed a quasi-Gaussian kernel (QGK). The QGK has a characteristic form of a causal 
transient produced by non-stationary physically realizable system. Numerous tests with EEGs 
recorded from different subjects under various conditions indicate remarkable accuracy of 
QGK as a universal model of a monolithic waveform.  

FD creates remarkably accurate explicit model of EEG, which is at the same time very 
economical since QGK is defined by just three parameters. This opens a possibility for 
designing effective tools for real-time recognition of specific activity patterns in the time 
course of ongoing EEG, including epileptogenic activity.  

There is a considerable diversity of shapes and patterns of electrographic seizures not only 
between different types of epilepsy, but also between different patients with similar types of 
epilepsy, and also between different EEG channels (locations where from the EEG signal is 
recorded) of the same patient. 

We have developed a universal pattern recognition technique that may work with various 
template patterns. The particular pattern to be searched in the EEG for particular 
patient/channel and its limits of variability must be either provided by user, or determined 
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automatically or interactively with the user from the sample EEG recordings of that 
patient/channel.  

 

METHODS 
The proposed seizure detection methodology consists of two major parts: 1) creating a model 
of the input EEG by applying the real-time fragmentary decomposition algorithm; 2) model 
based real-time detection of specific epileptogenic activity patterns (Fig.1).   
 

 

 
 

Fig. 1. The main steps and modules of the algorithm. 

 

Real-time fragmentary decomposition 
Digital processing of input EEG uses adaptive segmentation with a window the length of 
which is tuned up to the characteristic points of the signal. Typical window contains just one 
segment, or half-wave.  
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As soon as the window containing at least one EEG half-wave is acquired, the Fragmentary 
decomposition algorithm [3] starts its processing (Fig.2). First, the signal is de-trended by 
subtracting the baseline trend (which is calculated using moving average). Then the 
segmentation points (zero-crossings and local minima (for positive half-waves) or maxima 
(for negative half-waves)) of the smoothed de-trended signal (the guide function) are found 
that define the boundaries of EEG segments. Each segment then is transformed into 
frequency domain using original technique of time-frequency analysis – the Similar basis 
functions algorithm [4]. Identification of the corresponding QGK’s parameters is performed 
by the frequency domain template matching procedure.  
The output of the Fragmentary decomposition is a sequence of quasi-Gaussian kernels fitted 
to the segments of the de-trended EEG - the components of the model EEG. The sum of these 
components is the model EEG. 

Each time a new model component is added to the output sequence, the Event recognition 
algorithm is launched to check whether a seizure pattern may be recognized in the output 
component sequence or not. 

Real-time Event recognition  
The Event detector utilizes an original temporal pattern recognition algorithm that checks the 
EEG model for presence of specific epileptogenic activity patterns. These patterns are also 
defined by means of QGK. 
The temporal pattern recognition algorithm works like an artificial neural network with short-
term memory that has been already trained for recognition of specific temporal sequence. The 
short-term memory is realized by introducing specific delays in the connections between the 
network elements, or the elements of the recognizer. 
The Event detector works in ‘real time’, in the course of model signal arrival to the input of 
the detector. As the model signal consists of discrete units – the quasi-Gaussian components, 
- each step of detection process is triggered by the arrival of a new model signal’s 
component. When the new model component arrives, the Event Detector checks whether it is 
a part of the pattern we are looking for, and if so, whether the pattern is complete (i.e., 
detected). As soon as the pattern recognition is complete, a flag (‘Event Detected’ flag) is set 
to ‘true’ to notify the system that the event has been detected. If for certain amount of time 
(‘cessation time’) after the last detected pattern there are no patterns detected, the ‘Event 
Detected’ flag is set to ‘false’ to notify the system that the event has been ceased.  

Preparatory phase: Defining the template pattern for seizure detection for particular 
patient (or animal) 
The preparation of template pattern for particular subject (or animal)/channel may be done in 
several ways.  

Manual definition of the template pattern 
Having in front the fragmentary decomposition of patient’s ictal EEG, the user may manually 
select those components that must form the template pattern, and provide parameter ranges or 
weights to each template component. 

Automated definition of the template pattern using similarity analysis 
Automatic determination of seizure pattern for particular patient/channel is a very 
complicated task. Significant variability in the seizures that exists even within particular 
patient/channel requires large amounts of EEG records containing seizures from the patient. 
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Such opportunity is rarely available. Thus, we have developed a method that automatically 

 
 

Fig. 2. The Fragmentary decomposition. 
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estimates significant parameters of repetitive patterns from just one or two recorded seizures. 
Based on experience and knowledge, the user (possibly, a doctor) will adjust those estimates 
so that the resulting template pattern (the parameter limits) will take into account possible 
variability in patient’s seizures. 

We developed an algorithm that finds periodically repeating components in the fragmentary 
decomposition of an ictal EEG, estimates their parameters and builds a template pattern from 
these components. The algorithm constructs a similarity matrix for all model EEG 
components, then selects and groups those components that consistently reappear with 
frequency close to the main frequency of the ictal EEG. The automatically defined template 
pattern can then be edited manually: some components may be removed, the parameter mean 
values and ranges may be modified, and different weights may be assigned to components. 
 

RESULTS 
 

The verification of the algorithm was performed on animal and human EEG data.  
The animal data consisted of EEG recordings from rats of WAG/Rij strain (Wistar Albino 
Glaxo rats from Rijswijk) – a widely accepted animal model for human absence epilepsy [5], 
provided by Radboud University of Nijmegen, The Netherlands (6 animals, records duration 
3 or 3.5 h). 
The human data consisted of scalp and intracranial EEG recordings downloaded from two 
free databases available on the Internet: the IEEG database for intracranial recordings (15 
patients, records duration from 11 h to 5 days) and CHB-MIT (Children’s Hospital Boston) 
database for scalp recordings (16 patients, records duration from 20 h to 3 days). 
The template patterns for each animal or patient were constructed using automated definition 
of the template pattern based on similarity analysis, using only first few (3 or more, but less 
than one third of the total number of seizures) electrographic seizure episodes of that 
animal/patient. Then this template was used in the Event Recognition algorithm during the 
real-time operation (Fig. 5). 

The EEG recordings were ‘fed’ to the detection algorithm with the same sampling rate as that 
used during acquisition to simulate the real-time processing.  

The seizure detection time – the time between the onset of the seizure and the moment when 
the algorithm recognizes the occurrence of the event – basically depended on the length of 
the template event, ceteris paribus.  
 

Rat EEG 
 

EEG records from 6 WAG/Rij rats were processed with the seizure detector program. Each 
animal’s EEG contained from tens to hundreds of seizures (so called spike-wave discharges, 
SWD, Figs. 3, 4).  
In all cases, all events classified as SWDs were reliably detected. No SWD was missed (no 
false-negative detection). Besides ‘normal’ long SWDs, the short and relatively weak SWDs 
(containing two and more spike-waves) were also successfully detected (Fig. 4).  
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In few cases there were few false-positive (FP) detections. However, what was classified as 
FP detections was mostly a single, double or triple SWs, sometimes very clear, sometimes 
not, sometimes ‘riding’ on a sine-wave-like oscillations (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Examples of spike-wave discharges (SWD) from a rat of WAG/rij strain (animal model 
of absence epilepsy). A. A 20s long fragment of EEG containing SWD. B. Expanded initial 
part of the same SWD as in A. C, D. Expanded initial parts of other SWDs of the same animal. 
The red vertical lines indicate the seizure onset; the yellow lines indicate the detections. 

 
The presence of such FPs in the results is due to the fact that the template pattern used for 
SWD detection in most of the cases consisted of just 2 spike-wave complexes. When a 
pattern of 3 spike waves was used, the FP detections were completely eliminated or 
significantly reduced. However, using longer patterns, obviously, increases the detection 
time.   

In few cases ‘bad contact’ artefacts produced real FP detections. Except these cases, there 
were no FP detections caused by other, not relevant (not epileptogenic SW-like) EEG events. 

The average (across all animals) detection time was less than 300 ms from the seizure onset, 
and this time is mostly stipulated by the number of spike-wave complexes that form the 
detection pattern for reliable detection.  
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Fig. 4. A 100 s long fragment of rat EEG (black line) containing five SWDs and one short 
event that has two clear spike-wave complexes. The bottom red line indicates detections. For 
comparison, a short high-amplitude event that was not (and should not be) detected is also 
shown. 

 
 
 

 
 

Fig. 5. Examples of seizure detection. Upper traces are fragments of human (left) and rat 
(right) EEGs containing initial part of an electrographic seizure (spike-wave discharge). Note 
the difference in time scale. Middle traces are the same EEG fragments with baseline trend 
removed. Bottom traces are the reconstructed model EEGs. The particular template event 
patterns constructed for each case at Preparatory phase are shown at bottom left. The 
rectangular windows at bottom traces show the fragment of the model EEG that was 
recognized as the first event in the seizure. Vertical dashed lines indicate the visually 
estimated start time of the electrographic seizure and the time when the first event is detected 
by the algorithm. 
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Fig. 6. Examples of detected single or double SWs. 
 
 
 
Human EEG 
 

The human data collection on which the algorithm was tested contained intracranial and scalp 
EEG recordings from epileptic patients (the concrete diagnosis/type of epilepsy is not 
specified in these databases).  
One case from scalp dataset was identified by us as generalized absence epilepsy; in this case 
the algorithm showed similar to rat cases excellent performance, detecting all seizures in less 
than 1 s after their onset (average detection time 0.46 s) without any false positive (Fig. 5, left 
panel).  
In most of the other cases, both scalp and intracranial, the seizures manifest complicated 
dynamics, with large amplitude spikes arising tens of seconds after the seizure onset. 
However, it was possible to reveal very specific patterns just following the seizure onset that 
unequivocally characterized the seizures. These patterns significantly varied across patients 
and channels, both for scalp and intracranial recordings (Fig. 7). Meanwhile, the seizures of 
the same patient are pretty much alike, and, particularly, the initial parts of the seizures have 
distinctive common features (Fig. 8). 

So this fact allowed us to define for each patient a template characteristic pattern that was 
used by the “Event recognizer” module of the algorithm to detect the seizure onsets in that 
patient. 
Fig. 9 shows the same seizure examples as in Fig. 7, with the detection results. It may be 
noticed that the detection times vary significantly for different patients - from fractions of a 
second to several seconds. But it is clear also that this time is mostly stipulated by the specific 
duration of the unique seizure onset pattern in a given patient.   
Moreover, there were cases where it was possible to reveal unique precursor events that 
preceded the seizure onset for several seconds. We were able to detect these events and thus 
detect the seizure before it actually starts (Fig. 10). 
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An important factor is, in our opinion, that in the majority of processed cases the detection 
occurred a few seconds before the significant increase of spike amplitudes, as may be seen in 

 
Fig. 7. Examples of seizure onset patterns in different patients. Note different time scales.  
 

the examples shown in Fig. 9. This might mean, that at the moment of detection and, 
correspondingly, producing an alarm signal, the patient may still be able, for few seconds, to 
properly react and perform necessary action to avoid potential danger (e.g., sit or lay down, 
stop the car, etc.). 

In one intracranial case the seizures were becoming apparent in one particular channel much 
earlier (about 50s) than in other channels (focal epilepsy with secondary generalization, Fig. 
11). This particular channel was used for the detection. The detection time from the seizure 
onset in that channel was approximately 2 – 2.5 s, which is about 48 s prior to seizure 
generalization.  
Another important feature of our algorithm is that it may pick up events that are small in 
amplitude and/or short in duration, even if they are smaller in amplitude than the background 
(interictal) EEG. In one patient (9 years old female) the interictal EEG exhibited practically 
permanent spike-waves, with some brief interruptions, while the seizures were very short (~ 
5.5 – 14 s) and smaller in amplitude than the interictal activity (Fig. 12). However, they had a 
distinctive feature - a relatively high frequency oscillation. The detector tuned for such brief  
oscillation effectively detected all the seizures (8) without false positives.  
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Fig. 8. The initial parts of different seizures from one scalp patient and one intracranial patient. 
It may be seen that the initial parts of seizures from the same patient have distinctive common 
features. 
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Fig. 9. The same seizures as in Fig. 7 are shown, together with the model-based template 
patterns that were used for seizure detection in each case. The orange vertical lines indicate the 
time when the algorithm detected the seizure. The times between the seizure onset and the 
detection, as well as between the detection and occurrence of large amplitude spikes, are also 
indicated. 
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Fig. 10. In this patient/channel the seizure is preceded by a large deflection which seems to be 
unique for the seizures. This precursor deflection precedes any noticeable changes in the EEG 
that may be considered as a seizure start. This precedence ranged from 2.5 s to 26.3 s in 
different seizures. A. A 120 s long fragment of EEG containing one of the seizures. The red 
vertical line indicates the seizure onset. The orange vertical line indicates the detection 
following the precursor even shown in more detail in inset in B. B. Expanded initial part  (30 s 
long) of the EEG fragment in A containing the precursor event and the seizure onset. C. A 120 
s long fragment of the EEG of the same patient containing the beginning of another seizure 
and four preceding strong events. This particular seizure was extremely long - about 12.5 min. 
The preceding events occur at approximately similar intervals (~4.5 s).  
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Fig. 11. An example of secondarily generalized seizure. The same seizure in two different 
channels of the EEG is shown in the same time scale. It may be seen that the seizure becomes 
apparent in channel RMG_02 (upper trace) much earlier (about 50 s) than in channel RAT_5 
(lower trace) (and in other channels as well, not shown). The detection was performed in 
channel RMG_02. The detection time (thick orange vertical line) from the conjectural seizure 
onset (thin red vertical line) in channel RMG_02 is approximately 2.25 s. This is about 48 s 
prior to seizure generalization (when it becomes apparent in other channels).  

 
 

 
 

 
 

 
 

 
 

 
 

 
Fig. 12. An illustration that the algorithm may pick up events that are smaller in amplitude 
than the background (interictal) EEG. In this patient (9 years old female) the interictal EEG 
exhibits practically permanent spike-waves, with some brief interruptions. The seizures are 
very short (~ 5.5 – 14 s) and are smaller in amplitude than the interictal activity. Their main 
distinctive feature is relatively high frequency oscillation. The detector tuned for such brief but 
strong oscillation effectively detected all the seizures (8) without false positives.  
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CONCLUDING REMARKS  
 

Our preliminary results show that this methodology may indeed provide an effective means 
for very early and reliable seizure detection. 

The detection time is short (to our knowledge, the shortest among seizure detection methods), 
so the method is very appropriate for using both in seizure alarm systems and systems 
designed for counter-stimulation experiments.  
In the majority of processed cases, the detection occurred a few seconds (5 - 50) before the 
significant increase of spike amplitudes or before the seizure generalization. This means that 
at the moment of detection the patient may still be able to properly react and perform 
necessary actions to avoid potential danger (e.g., sit or lay down, stop the car, etc.). 
The method is based on the EEG, which is the preferred source for seizure detection because 
EEG always, in all types of epilepsy, exhibits the seizures and does this the earliest compared 
to other measures. Besides, there are many non-convulsive cases of epilepsy, which are not 
accompanied with visible and detectable movements that could be captured by video-cameras 
and other motion sensors, especially during sleep. For such seizures, the EEG remains the 
only source of information for their detection. 
Our method needs only a single channel EEG signal, thus it may be used with a miniature, 
easily wearable wireless single-channel EEG recording device. 
The flexibility of the algorithm allows effectively adjusting it for each individual patient to 
reach the optimal and fastest performance for that patient.  
The method is actually a universal tool for EEG analysis. It may be used not only for seizure 
detection, but for recognition of any pattern in the EEG, including epiliptogenic events, 
ERPs, oscillations, K-complexes, eyeblinks, etc. 

The ability to detect short epileptogenic events and other specific patterns (which may be 
small in amplitude) makes the method worthwhile for research directed to seizure prediction.   

Fragmentary decomposition significantly reduces the volume of numbers needed to 
accurately reproduce the EEG signal: the signal is decomposed into separate components, 
each of which is fully described by just three parameters. Such data compression provides 
possibility for much faster transmission of the EEG over the Internet when required, allowing 
watching and processing the signal at the receiver’s end practically in real time. Accordingly, 
the proposed methodology may be effectively utilized in the systems of tele-monitoring. 
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